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ABSTRACT

NEW DATA STRUCTURES, MODELS, AND ALGORITHMS
FOR REAL-TIME RESOURCE MANAGEMENT

by 
Xinfa Hu

Real-time resource management is the core and critical task in real-time systems. This 

dissertation explores new data structures, models, and algorithms for real-time resource 

management.

At first, novel data structures, i.e., a class of Testing Interval Trees (TITs), are 

proposed to help build efficient scheduling modules in real-time systems. With a 

general data structure, i.e., the TIT* tree, the average costs of the schedulability tests in 

a wide variety of real-time systems can be reduced. With the Testing Interval Tree for 

Vacancy analysis (TIT-V), the complexities of the schedulability tests in a class of 

parallel/distributed real-time systems can be effectively reduced from 0(m2nlogn) to 

0(mlogn+mlogm), where m is the number of processors and n is the number of tasks. 

Similarly, with the Testing Interval Tree for Release time and Laxity analysis (TIT-RL), 

the complexity of the online admission control in a uni-processor based real-time 

system can be reduced from 0(n2) to O(nlogn), where n is the number of tasks. The 

TIT-RL tree can also be applied to a class of parallel/distributed real-time systems. 

Therefore, the TIT trees are effective approaches to efficient real-time scheduling 

modules.

Secondly, a new utility accrual model, i.e., UAM+, is established for the resource 

management in real-time distributed systems. UAM+ is constructed based on the 

timeliness of computation and communication. Most importantly, the interplay between
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computation and communication is captured and characterized in the model. Under 

UAM+, resource managers are guided towards maximizing system-wide utility by 

exploring the interplay between computation and communication. This is in sharp 

contrast to traditional approaches that attempt to meet the timing constraints on 

computation and communication separately. To validate the effectiveness of UAM+, a 

resource allocation algorithm called IAUASA is developed. Simulation results reveal 

that IAUASA is far superior to two other resource allocation algorithms that are 

developed according to traditional utility accrual model and traditional idea. 

Furthermore, an online algorithm called EDRSA is also developed under UAM+, and a 

Dynamic Deadline Adjustment (DDA) technique is incorporated into IDRSA algorithm 

to explore the interplay between computation and communication. The simulation 

results show that the performance of EDRSA is very promising, especially when the 

interplay between computation and communication is tight. Therefore, the new utility 

accrual model provides a more effective approach to the resource allocation in 

distributed real-time systems.

Thirdly, a general task model, which adapts the concept of calculus curve from 

the network calculus domain, is established for those embedded real-time systems with 

random event/task arrivals. Under this model, a prediction technique based on history 

window and calculus curves is established, and it provides the foundation for dynamic 

voltage-frequency scaling in those embedded real-time systems. Based on this 

prediction technique, novel energy-efficient algorithms that can dynamically adjust the 

operating voltage-frequency according to the predicted workload are developed. These 

algorithms aim to reduce energy consumption while meeting hard deadlines. They can
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accommodate and well adapt to the variation between the predicted and the actual 

arrivals of tasks as well as the variation between the predicted and the actual execution 

times of tasks. Simulation results validate the effectiveness of these algorithms in 

energy saving.
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CHAPTER 1 

INTRODUCTION

Real-time computer systems have wide applications in many fields in the real world, such 

as digital control, signal processing, medical diagnosis and monitoring, 

telecommunication, industrial automation, military command and control, and 

multimedia. Unlike general purpose computer systems, the tasks to be performed by these 

real-time computer systems have timing constraints, and the services provided by real­

time computer systems must be delivered in a timely way. Whether the tasks could be 

accomplished within the specified timing constraints and the services could be provided 

in a timely way depend on whether the resources in the systems could be managed 

efficiently and the requests of resources could be always satisfied sufficiently timely. 

This makes real-time resource management the core and critical task in almost all real­

time computer systems.

1.1 Background

Over the past few years, real-time resource management has been extensively studied in 

various flavors. While a lot of problems could be dealt with by employing existing 

techniques, many important problems are in need of exploration. Among them, how to 

find appropriate data structures for building efficient real-time resource management did 

not receive too much attention in the past. However, solutions to this problem are of great 

importance in real-time systems in the sense that well-designed data structures not only 

make resource management efficient (thus improve system performance in reducing

1
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complexity), but also make more resources available for applications (thus improve 

system performance in meeting timing constraints).

The other important problem is the model for the resource management in 

asynchronous real-time distributed systems, which are emerging in many domains, 

including defense, telecommunication and industrial automation, for the purpose of 

strategic mission management. These systems are distinguished in the sense that they 

must be able to accommodate significant run-time uncertainties that are inherent in their 

application environment and system resource states. This violates the static, 

deterministic, synchronous premises on which most classical/conventional real-time 

computing concepts, theorems, and techniques are founded. Hence, how to establish an 

appropriate model for resource management in these systems is a core task. Resource 

management in asynchronous real-time distributed systems has been explored for years. 

Up to now, lots of work has been conducted under Jensen’s utility accrual models. These 

models are constructed based on the timeliness of computation or communication. 

Resource management under these models is limited due to the fact that they are 

inadequate for capturing the interplay between computation and communication, which 

are two main factors in asynchronous real-time distributed systems. Solutions to this 

problem will establish the foundations for more effective resource management in 

asynchronous real-time distributed systems.

Another important problem is concerned with the efficient power/energy 

management in those embedded real-time systems with random event/task arrivals. Most 

past and current work on power-efficient real-time resource management is based on 

classical/conventional task models, i.e., periodic, aperiodic and sporadic task models.
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These models, however, are incapable of accommodating random task arrivals. A more 

general task model is needed to capture the characteristics of random task arrival, and 

corresponding foundations are needed for building power-efficient resource management 

in those embedded real-time systems.

1.2 Objectives

This dissertation explores the following techniques for the resource management in real­

time systems: (1) new data structures, (2) new model and algorithms for asynchronous 

real-time distributed systems, and (3) new model, technique, and algorithms for 

embedded real-time systems.

The first objective is to establish new data structures for building efficient real­

time resource management. Some new data structures are established and applied to the 

resource management of several classes of real-time systems. These new data structures 

not only help to construct efficient resource management, but also save processing 

resource and significantly improve system performance.

The second objective is to establish new utility accrual model for the resource 

management in asynchronous real-time distributed systems. The new model overcomes 

the inadequacy of existing utility accrual models and can fully capture the interplay 

between computation and communication, which are the two main factors in 

asynchronous real-time distributed systems. New resource allocation algorithms under 

the new model are developed. Extensive simulations show the excellence of these 

algorithms. The results validate the effectiveness of the new model for resource 

management in asynchronous real-time distributed systems.
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The third objective is to establish new task model and foundations for power- 

efficient resource management in embedded real-time systems. Conventional task models 

are inadequate for accommodating the random (including burst) arrivals of tasks. The 

new general model adapts the concept of calculus curve from network calculus domain 

and uses calculus curves to characterize random event/task arrivals and system 

processing capacity. History window based prediction technique is established under the 

general task model. The prediction technique provides the foundation for online real-time 

Dynamic Voltage-frequency Scaling (DVS). Two online DVS algorithms are developed 

based on the prediction technique. Extensive simulations are conducted. Both algorithms 

exhibit excellent performance in energy saving.



www.manaraa.com

CHAPTER 2 

TESTING INTERVAL TREES FOR REAL-TIME SCHEDULING SYSTEMS

In real-time systems, the efficiency of the resource Scheduling Module (SM) is of critical 

importance [1,2, 3]. An efficient SM not only implies the overhead of the SM is low but 

also makes it possible to obtain better decisions on resource allocation without loss of 

system performance. Better decisions usually are more time-consuming and can be 

obtained only at the cost of system performance. Due to the stringent timing constraints 

and the high cost of analyzing and computing the optimal resource allocation decisions, 

some online real-time scheduling systems have to sacrifice the optimality of their 

decisions for the speed with which the decision can be computed [5, 6].

The efficiency of a real-time SM depends not only on how efficient the 

underlying algorithms employed in the SM are but also on how efficiently these 

algorithms are implemented. On one hand, a good algorithm with poor implementation 

may still be unacceptable in practice. On the other hand appropriate implementation of 

the algorithm can further improve the efficiency of the SM. In the past, how to apply 

some novel and effective data structures to the SMs so as to improve their efficiency did 

not receive much attention. The author believes that by introducing effective data 

structures, the efficiency of many real-time SMs could be improved, which in turn will 

help to improve the performance of the system. This is of great importance in the domain 

of real-time systems. The author is motivated to find novel and effective data structures 

to help construct efficient SMs. Because feasibility analysis (or schedulability analysis) is 

the critical part of a SM, The author will focus on how to find novel and effective data 

structures for conducting efficient feasibility test. It is easy to see that the main task of the

5
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feasibility analysis is actually to check whether a group of intervals (corresponding to the 

execution of tasks) could be arranged without conflicts between them. Hence, the author 

first introduces the Testing Interval Tree (TIT), a balanced binary tree that is constructed 

based on intervals, and use it as the basic data structure. The author then extends this data 

structure for different uses. The first extension of TIT tree is the TIT* tree, which does 

not rely on any specifics of the underlying scheduling/testing algorithm, and is a general 

data structure that can be applied to a wide variety of real-time scheduling systems to 

reduce the average cost of the schedulability test. The second extension of TIT tree is the 

Testing Interval Tree for Vacancy analysis (TIT-V), which is used to conduct vacancy 

(unoccupied intervals) analysis in some parallel/distributed real-time systems; whenever 

a task/message is to be added to the task/message set, the schedulability test computes the 

available vacancy for that task/message according to the current TIT-V tree. Lastly, the 

TIT tree is extended to the Testing Interval Tree for Release time and Laxity analysis 

(TIT-RL), which is used to conduct the admission control in a uni-processor based real­

time service system; whenever a request arrives, the admission control component checks 

whether the requested service could be feasibly provided according to the current TIT-RL 

tree. Because the TIT trees can effectively reduce the cost of the corresponding 

feasibility/schedulability tests, they provide an effective approach to constructing 

efficient SMs.
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2.1 Definition and Properties of the TIT Tree

Before proceeding to the discussion of the TIT tree, the author defines a simple task 

model, under which a task T is characterized by a triple (r, d, e), where r, e and d  are the 

release time, the absolute deadline and the execution time of T, respectively.

T,

Figure 2.1 The TIT tree.

The TIT tree (Figure 2.1) is based on intervals and used for interval analysis. Its 

properties can be summarized as follows.

(1) It is a balanced binary tree.
(2) There are two types of nodes on it, i.e., the leaf nodes which represent tasks 

and the non-leaf nodes which represent intervals.
(3) Every leaf node is characterized by a triple, which defines a valid interval for a 

task to execute. For example, (r*i ,  dK\, eK\) defines a valid interval {rK\, d*i) for 
T,ri with start point rn\ and end point dn\.

(4) Every non-leaf node defines an interval. For example, (Startj, End,) defines an 
interval with start point Starti and end point End,.

(5) The interval of a non-leaf node covers those of its children. For example, 
{Starti, End,) covers (Starti, Endi) and {Starts Endk), and (Starti, Endi) covers 
(rKi, d„i) and {rn2 , dK2 ), where rK\ and dn\ are the release time and absolute 
deadline of task Tn\, respectively, and rn2 and d„2 are the release time and 
absolute deadline of task 7^2, respectively.

(6) The leaf nodes are placed in ascending order of their release times, and if more 
than one node has identical release time, they are placed in ascending order of 
their deadlines.

(7) For any non-leaf node, the interval of its left child is smaller than that of its 
right child, compared first on start point and then on end point if needed. For 
example, for (Starti, Endi), either {Starti < Startk) or {{Starti = Startk ) and 
{Endi < Endk)) holds.
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(0 , 18)

(0 , 10) ( 11 . 18)

(0 , 4 ) (5 . 10)
( 17 , 18)

(0 , 2) (5 . 8 ) (8 , 10) <13 , 16 )

Figure 2.2 A TIT tree.

There are two basic operations on the TIT tree, i.e., Insert and Delete/Remove.

Insert is invoked to insert a new task into the tree. It is accomplished in two steps. 
At the first step, it starts from the root of the TIT tree and searches down the tree 
to find an appropriate location where the new task should be placed. This step will 
identify a non-leaf node, and the new task should be inserted as its child. At the 
second step, the new task is put at the location that is identified in the first step. If 
the identified non-leaf node has only one child, Insert only needs to insert the new 
task as the left or right child of that node; otherwise, the identified node is split 
into two nodes, and the intervals of the two nodes are reset accordingly. Figure
2.2 illustrates a TIT tree. Suppose that a new task N  (12, 17) is to be inserted into 
the tree, node (11, 16) will be split into two nodes (say Ol and 02); one of the 
nodes (say O l) and F  (13, 16) will become the left and right children of the other 
node (i.e., 02), respectively. E  (11, 13) and N  (12, 17) will become the left and 
right children of O l, respectively. The intervals of Ol and 0 2  are both set to (11, 
17) so as to cover the intervals of their children. If the split causes the TIT tree to 
lose balance, rotation is needed to rebalance the tree. Throughout this chapter and 
the Appendix, the rotation operation is similar to that with an AVL tree [7], Insert 
also includes a procedure to update the intervals of the nodes on the path starting 
from the parent of the new task to the root of the tree.

Delete/Remove operation is invoked to delete a leaf node from the TIT tree. For 
this operation, two cases may exist. In the first case, it only needs to delete the 
leaf node, and no other operations are involved. In the second case, the removal of 
the leaf node causes the TIT tree to lose balance, and rotation(s) is needed to 
rebalance the tree. Similar to Insert, Delete also includes a procedure to update 
related intervals.

It is easy to see that for a TIT tree containing n leaves, the height of the tree is 

bounded by O(logn). For both Insert and Delete, their complexities are bounded by the 

height of the tree, i.e., O(logn).
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2.2 TIT* Tree and Its Applications to Real-Time Scheduling Systems

Schedulability tests are usually performed by calling the underlying scheduling algorithm 

to preprocess the whole task/message set. (In this section, the author uses tasks to 

describe TIT* tree, and illustrates how to apply TIT* tree to the schedulability test of 

tasks. The basic principles also apply to the schedulability test in message scheduling.) 

The main problem with this approach is that whenever a task is added to the task set, to 

test the schedulability of the new task set, the system needs to process the whole task set. 

The overhead of the test will be very high if the task set constantly contains a large 

number of tasks (this is very likely in an online dynamic environment, where new tasks 

are constantly added to the system). This overhead, however, may be reduced due to the 

fact that the joining of the new task may influence only a limited number of tasks, not the 

whole task set. Test on the whole task set is needed only in the worst case.

Figure 2.3 The TIT* tree.

The TIT* tree proposed here fully realizes this fact. Whenever the system 

performs the test, it only needs to test the schedulability of the tasks that correspond to a 

subtree of a TIT* tree, which corresponds to the whole task set. The TIT* tree (Figure
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2.3) is an extension of the TIT tree, and inherits all the properties of TIT tree including 

the following property.

(1) Every non-leaf node contains two pointers. One pointer points to the first task 
that is bounded by the interval of this node, and the other pointer points to the 
last task that is bounded by the interval of this node.

To see how to apply the TIT* tree to the schedulability test, let’s look at the 

example in Figure 2.4. For simplicity, the “first task” and “last task” pointers of all non­

leaf nodes are omitted except those of the node with interval (11, 18). Suppose that 

currently there are seven unfinished tasks in the scheduling queue (i.e., A, B, C, D, E, F, 

and G) and another task H  (15, 20) arrives, the schedulability test is performed in two 

steps.

Step 1: Find the set of tasks that may conflict with task H. This is accomplished 
by a checking procedure that starts from the root. At each node, it checks 
to see whether the interval of this node overlaps with that of task H. If the 
two intervals overlap, it checks the children of this node. This procedure 
repeats until it reaches a leaf node or a non-leaf node that satisfies: (1) 
both of its children overlap with task H, or (2) one of its child overlaps 
with task H  and its children overlap with each other. In the case that even 
the root does not overlap with H, the schedulability test is not needed at 
all. (No task currently in the system conflicts with H .) For the above 
example, the checking procedure ends at the node with interval (11, 18).

Step 2: Once it identifies the node and hence the corresponding set of tasks, the 
schedulability test is conducted against this set of tasks plus H. In the 
above example, a schedulability test on tasks E, F, G and H  is performed.

( 11 , 18)

( 17 , 18 )

(0 , 2) (3 , 4 ) (5 , 8 ) (8 , 10) ( 11 , 13) ( 13 , 16)

( 11 , 16)(5 , 10 )(0 , 4 )

(0 , 18)

(0 , 10)

Figure 2.4 Schedulability test by using TIT* tree.
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The average cost of the TIT* tree based schedulability test is analyzed as follows. 

Suppose that there are n tasks currently on a TIT* tree, and the underlying task 

scheduling algorithm is preemptive Earliest Deadline First (EDF). The average cost of 

the schedulability test is computed as follows. (The average cost includes two parts, i.e., 

the cost of search and that of EDF to process the specified task set. For a TIT* tree 

containing n tasks, its height is bounded by (logn+2). At height i, the number of nodes on 

a TIT* tree is at most 2‘. The search will take (i+l) steps, and the cost of EDF will be

0 ( —  log— ).)
2 '  2 '

(log n+2)

£  2'((i + i) + 4 log-r)
Average Cost = 0 ( —&  (logn+2) 2-------— ) = D((log/i)2)

I *
;=o

By comparison, the average cost of the schedulability test without the TIT* tree 

will be O(nlogn).

It is easy to see that the advantage of TIT* tree lies in that it helps to reduce the 

number of tasks to be tested, and thus reduce the average cost of the schedulability test. 

Additionally, the advantage of TIT* tree does not rely on any specifics of the underlying 

scheduling algorithm, and this makes it a general data structure and applicable to a wide 

variety of scheduling systems with different scheduling policies. For example, the 

underlying scheduling algorithm could be the preemptive or non-preemptive version of 

Highest Priority First, Least Slack Time First, Highest Utility/Benefit First, or some other 

similar algorithm (the average cost of the schedulability test is still 0((logn)2)). Further 

study reveals that the TIT* tree is applicable to those schedulability tests that need to
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process the whole task set whenever a task is to be added to the task set, no matter 

whether the test is conducted online or offline, and whether the underlying scheduling 

algorithm is preemptive or non-preemptive.

2.3 TIT-V Tree and Its Applications to Real-Time Scheduling Systems

Consider a parallel/distributed real-time system containing m processors. There are n 

independent tasks to be dispatched to these processors. Suppose every task has a release 

time, an absolute deadline and the workload to be finished by it. Every task can be 

replicated, and the workload of the task can be partitioned and distributed to these 

replicas. Replicas are dispatched to processors (but more than one replica of the same 

task can not be dispatched to the same processor). Tasks/replicas are preemptively 

scheduled according to their deadlines on every processor. The objective is to find a 

mapping of tasks/replicas to processors such that the deadline-satisfied ratio (the ratio of 

the number of tasks whose deadlines are met to the total number of tasks) is maximized.

Because this problem is NP-hard, only heuristic/approximation algorithms can be 

employed in the real world. A simple heuristic approach is to first sort the tasks in 

ascending order of deadline and then test the feasibility of tasks one by one in that order. 

On every processor, tasks are also processed according to their deadlines. It turns out that 

this heuristic can be well applied to real system to solve the aforementioned and similar 

problems. For example, in [8], a best-effort algorithm called DPR is constructed 

according to this heuristic to maximize the deadline-satisfied ratio in a distributed real­

time system, and another algorithm based on similar heuristic is also constructed to
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achieve the same goal. The highest level framework of this heuristic is listed in Figure 

2.5, which is similar to the highest level framework in [8].

D D R A A (  r  )

I n p u t :  r= { 7 ',, T2......... 7 „ ); /*the task set to be processed*/
O u tp u t :  resource allocation result;

1 S o r t  t a s k s  T x, Tz, T „  in  a s c e n d in g  o r d e r  o f  d e a d l in e ;
2 F o r  T= T[ to Tn d o  !*T{ ... Tn' are in ascending order o f  deadline*/
3 D e te r m in e _ R e p l ic a s _ P ro c e s s o r s (7 0 ;  /*determine the number o f replicas and the processors for task T  */

Figure 2.5 Deadline-driven heuristic resource allocation algorithm.

D e te r m in e _ R e p l ic a s _ P r o c e s s o r s  ( T )

I n p u t :  T; /*the task to be processed */
O u tp u t :  determine the number o f replicas and the processors for T  if  enough resource is available for it,

otherwise do not allocate any resource for it;
V a r ia b le s :

PT= 0 ; /*the set o f  processors that have NO replica o f T  */
P; /*the set o f  all processors*/
P R -  0  ; /*the set o f processors that HAVE replicas o f T  */
M inResponse; /*the minimum response time*/
PID  ; /*ID o f  the processor that has the minimum response time*/

1 M inResponse= 0 0  ;
2 PT= P -  PR;
3 I f  (P T  = =  0)
4 R e tu r n  FAILURE;
5 F o r  each processor q E P T  d o
6 ResponseTime=  E D F _ A n a ly z e R e s p o n s e  (q, T, (|P/{|+1)) ; /*(|F7?|+1) is the current number o f processors that

will get a replica o f T, and the workload o f the replica that is to be 
tested on q is the total workload o f T  divided by (|F7?|+1)*/

7 I f  (ResponseTime < M inResponse)
8 M inResponse= ResponseTim e;
9 P1D= q;
10 PT= P T  — {PID};
11 PR=PR+{ PI D} ;
12 I f  (M inResponse > T . d )  G o to  step l;
13 F o r  each processor q E  P R - { P I D }  d o
14 I f  ( E D F _ A n a ly z e R e s p o n s e  (q,T, j/5/?!) >7. d) G o to  s tep l;
15 R e tu r n  SUCCESS;

Figure 2.6 The feasibility test algorithm.
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The framework of the feasibility test {Determine JReplicasJProcessorsQ) is listed 

in Figure 2.6. It is similar to the feasibility test contained in [8], The subroutine 

EDF_AnalyzeResponseQ contained in Determine_Replicas_Processors() uses Earliest 

Deadline First (EDF) rule to perform response time analysis (because tasks on every 

processor are processed according to EDF rule). It is easy to see that the complexity of 

this feasibility test is 0{m  nlogn), given n independent tasks and m processors. (In the 

worst case, a task T  may have m replicas. To decide one replica, the test tries every 

processor that has no replica of T. The test takes O(nlogn) time on every processor. 

Hence the total cost is 0{m2n\ogn).) In the following subsection, the TIT-V tree is 

introduced to construct more efficient feasibility tests.

2.3.1 Definition and Properties of the TIT-V Tree

In a TIT-V tree, a vacancy is an interval that is not occupied by any task. Every vacancy 

has a left-endpoint and a right-endpoint. The TIT-V tree (Figure 2.7) is used for vacancy 

analysis. Its properties can be summarized as follows.

( 5 2 ,  El, V S i ,  V<?2, V i )

time

(5f, Ei, vsi, vet, v/)(Sk, Eh vst, veh vk)

(5b Ei, vst, veh Vj)

(50, Eq, v j 0 , ve0, v0)

Figure 2.7 The TIT-V tree.

(1) A TIT-V tree is an extension of the TIT tree.
(2) A node in a TIT-V tree is characterized by a 5-tuple (S„ £), v.v„ vet, v,) (Figure 

2.7), where 5, and £) are the start and end points of interval (S„ Ei), v.y, and ve,
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are the left-most and right-most points of the vacancies contained in (S„ Ej), 
and v, is the total length of the vacancies contained in (vs„ ve,) (please note 
that there may be more than one vacancy within (v.v„ ve,), and they are 
separated by some intervals that are occupied by tasks).

(3) For a non-leaf node, the interval of its left child is smaller than that of its right 
child, compared on start point. For example, for node (S*, £*, vs*, ve*, v*), the 
interval of its left child ((Sa, Ea)) is smaller than the interval of its right child 
( ( S b , E b ) ) ,  i.e., ( S a < S b ) -

(4) Given a non-leaf node in a TIT-V tree, the interval defined by its left child 
never overlaps with that by its right child, and the end point of its left child is 
equal to the start point of its right child. For example, in Figure 2.7, (Ea = Sb) 
holds.

(5) For a non-leaf node, its parameters are decided according to those of its 
child/children. For example, in Figure 2.7, for node (S*, £*, vs*, ve*, v*), the 
following holds: vs* = Min{vsa, vsj,}= vsa, ve* = Max{vea, veb}= veb, v* = (v„+ 
Vb), ^k~ Min{Sa, s h} — Sa and P*— Mctx{Ea, Eb}— Eb-

2.3.2 Operation on TIT-V Tree and Its Complexity

Case-1
Case-2
Case-3

Case-4

k So U t5 E0 t6 t7

Figure 2.8 Four cases.

The main operation on the TIT-V tree is Adjust. It is invoked when a task (say T=(r, d, e)) 

is to be inserted into a TIT-V tree (say Titv). Titv needs to be adjusted because some 

vacancies of it may be occupied by T. The main work contained in Adjust is to find the 

left-most point of vacancy P\ (Figure 2.7) and the right-most point of vacancy P2 , such 

that (r <P\ <P2 <d), and the total length of the vacancies within interval (Pi, P2) is equal 

to e. Once P\ and P 2 are identified, all the vacancies within (Pi, P2) will be occupied by 

T. Titv needs to be adjusted according to the remaining vacancies and those vacancies, 

created due to T. To be more specific, four cases may exist (Figure 2.8).
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Case 1: T= (t7 , t8, e), and (t7 , tg) does not overlap with the interval defined by Titv 

(i.e., (So, Eo)). So, a new vacancy (i.e., (Eo, t7)) needs to be appended to the right side of 

Titv. Besides, a leaf node created according to T also needs to be appended to the right 

side of the tree.

Case 2: T =  (tj, t3 , <?), and it can finish before So- A new leaf node needs to be 

created and appended to the left side of the tree. Please note that if T= (tj, t6, e), another 

vacancy (Eo, t6) needs to be appended to the right side of Titv.

Case 3: T= (t2 , t3 , e), and it can not finish before So (i.e., part of the vacancies 

contained in (So, Eo) will be occupied by T). the system needs to find the right-most point 

that will be occupied by T  and adjust the tree accordingly (because all the vacancies 

between t2 and that right-most point will be occupied by 7). Similar to case 2, if T= (t2 , to, 

e) and it can finish before Eo, another vacancy (Eo, to) needs to be appended to the right 

side of Titv.

Case 4: T= (t4 , ts, e), and T will occupy some vacancies contained in (So, Eo).  This 

is the most complicated case. The system needs to find the left-most point and the right­

most point that will be occupied by T and adjust the tree accordingly (because the 

vacancies between that left-most point and that right-most point will be occupied by T). 

Similar to case 2 and case 3, if T= (t4, to, e) and it can finish before E 0, another vacancy 

(Eo, to) needs to be appended to the right side of the TIT-V tree. (Please refer to the 

Appendix for more details about the process on this case. For the other cases, their 

processes can be easily constructed by employing subroutines in the Appendix.)

Because the complexity of every operation contained in Adjust is bounded by the 

height of the TIT-V tree, the complexity of Adjust is bounded by the height of the tree.
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Given a TIT-V tree containing n leaves, the height of the tree is bounded by O(logn). 

Hence, the complexity of Adjust is O(logn).

2.3.3 Using TIT-V Tree to Construct Feasibility Test for DDRAA

D e te r n i in e _ R e p l ic a s _ P r o c e s s o r s  ( T ) 

I n p u t :  T\ /*the task to be processed*/
O u tp u t :  determine the number o f replicas and the processors for T  if enough resource is available for it,

1
otherwise do not allocate any resource for it;

Max=  0;
2 F o r  p=  1 t o  m d o  /*  test T  on processor 1 to processor n*/
3 Result[p]. A va ilableV acancy= C om pute_\stcnacy (p, T )  ; /*compute the available vacancies on processorp*t
4 Result [ p]. NodelD= p; /*record the processor ID*/
5 I f  (M ax < Result [ p \. AvailableVacancy)
6 Max= Result [ p]. AvailableVacancy;
7 Node= p\ /*record the processor that has the maximum available vacancies*/
S I f  (M ax >T. c)
9 D is p a tc h  T  t o  N ode ; /*one node is enough*/
10 R e tu r n ;
11 S o r t  R esult [ ] i n  d e s c e n d in g  o r d e r  o f  AvailableVacancy,
12 Num= 0 ;
13 Sum=0 ;
14 F o r  i= 1 to  m  d o
15 Sum= Sum + Result [ i ]. AvailableVacancy,
16 I f  (Sum > T. e)
17 Num= i;
18 B r e a k  for loop;
19 I f  (Sum < T. e)
20 R e tu r n ;  /*no resource is allocated for T  */
21 E ls e
22 Sum=  0;
23 F o r  i= 1 t o  (Num - 1) d o
24 M a k e  a  r e p l i c a  o f  T, a n d  d i s p a tc h  i t  t o  n o d e  Result [ i ]. N odelD  ;
25 T h e  p r o c e s s in g  t im e  o f  th i s  r e p l i c a  is  Result [ i  ]. AvailableVacancy  ;
26 Sum= Sum + R esult [ i ]. AvailableVacancy ;
27 M a k e  a  r e p l i c a  o f  T, a n d  d i s p a tc h  i t  t o  n o d e  Result [ Num  ]. N odelD  ;
28 T h e  p r o c e s s in g  t im e  o f  t h i s  r e p l i c a  is s e t  to  ( T. e  - S u m ) ;
29 R e tu r n ;

Figure 2.9 The TIT-V tree based feasibility test algorithm.

Now, the TIT-V tree is employed to reconstruct the feasibility test for DDRAA (listed in 

Figure 2.5). The pseudo code of the TIT-V tree based feasibility test is listed in Figure 

2.9 and Figure 2.10.

Determine_Replicas_Processors(T) (Figure 2.9) is used to determine the number 

of replicas of T and the processors to which these replicas can be feasibly dispatched.
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Compute_Vacancy(p, T) (Figure 2.10) is used to compute the total length of the available 

vacancies for T  on processor p.

C o m p u te _ V a c a n c y  ( p , T )

I n p u t :  p; /*the processor ID*/
F; /*the task to be tested */

O u tp u t :  AvailableVacancy; /*the available vacancies within the interval (F. r, T. d) on processor p*l

i*Titv is the TIT-V tree constructed according to the tasks on p*/
1 C a s e  1: (Titv is EMPTY) o r  (Titv. Root. S > T. d) o r  (Titv. Root. E < T . r )
2 AvailableVacancy= (F. d - T .  r);
3 C a s e  2: (other cases)
4 I f  (Titv. Root. S >  l. r )
5 I f  (Titv. Root. E < t . d )
6 AvailableVacancy=(Titv. Root. S  - T. r) + Titv. Root, v + (F. d - Titv. Root. £);
7 E ls e
8 Travel down the tree, compute the total length o f vacancies within (Titv.Root.S , F-<F), and record it in Vacancy;

9 Available Vacancy^ (Titv. Root. S  - T. r) + Vacancy;
10 E ls e
11 I f  (Titv. Root. E <  t . d)
12 Travel down the tree, compute the total length o f the vacancies that lie at the left side o f F. r (these vacancies

can not be occupied by F ), and record it in U ncoveredjv;

13 AvailableVacancy=(T. d  - Titv. Root. E) + (Titv. Root, v - U ncoveredjv);
14 E ls e
15 Travel down the tree, compute the total length o f the vacancies that lie at the left side o f F. r (these vacancies 

can not be occupied by F ), and record it in Uncoveredjv;

16 Travel down the tree, compute the total length o f vacancies within (Titv.Root.S, T.d), and record it in Vacancy;

17 AvailableVacancy= Vacancy - U n co vered j;
18 R e tu r n  (AvailableVacancy);

Figure 2.10 Compute available vacancy.

It is easy to see the complexity of Compute_Vacancy() is bounded by the height 

of the TIT-V tree, i.e., O(logn). Hence, the fo r  loop (Figure 2.9) from step 2 to step 7 runs 

in 0(m\ogn). The sorting in step 11 can be done in 0(mlogm). Because the Adjust 

operation on a TIT-V tree can be finished in O(logn) time, the complexity of steps 23-28 

is O(mlogn). (In the worst case, every processor gets a replica of T, the corresponding 

TIT-V tree is adjusted, and there are at most m processors.)
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Thus the complexity of Determine _Replicas_Processors{) is 0(m\ogn+m\ogm). 

Compared to 0(m 2n\ogn), this is a big improvement.

Figure 2.11(a) and Figure 2.11(b) show the computations of available vacancies 

for task 76=(11, 19, 6) and task T'6=(3, 19, 5) based on a given TIT-V tree. (This tree is 

constructed by inserting tasks T\= (0, 10, 2), T2= (5, 13, 2), T3= (14, 16, 1), r 4= (10, 17, 

2) and T$= (6, 18, 4) into an empty TIT-V tree one by one.). As is shown the total length 

of the available vacancies for Te is 5 time units while that for T'f, is 7 time units. Figure 

2.11(c) is the adjusted TIT-V tree after inserting task T'e>.

(0 , 5 , 2 , 5 , 3 ) (5 , 18 , 13 , 18 , 4 ) (0 , 5 , 2 , 5 , 3 )

(5 , 14 ,
13 , 14 , 1)

( 14 , 18 , 
15 , 18 , 3 )

(0 , 5 ,
2 , 5 , 3 )

(5 , 14 ,
13 , 14 , 1)

(0 , 5 .
2 , 5 , 3 )15 , 18 , 3)

(a) AvailableVacancy^ 5 (b) AvailableVacancy- 7

(0 , 3 , 2 , 3 , 1) ( 3 , 19 , 17 , 19 , 2 )

(0 , 3 , ( 3 , 19 ,
17 , 19 , 2 )

(c) TIT-V tree after inserting T'6

Figure 2.11 (a) and (b) compute AvailableVacancy and (c) TIT-V tree after inserting 7 \

Theorem 2.1 Under DDRAA, a replica T= (r, d, e) can be feasibly scheduled on a 
processor p  i f  and only i f  the total length o f the available vacancies 
returned by Compute_Vacancy(p,T) is equal to or larger than e.

Proof: <— If T  is schedulable under preemptive EDF on processor p  (and no task misses 
its deadline), this certainly implies that there are enough vacancies within (r, 
d) for accommodating T. Because Compute_Vacancy(p,T) always computes 
the total length of the available vacancies within (r, d), the AvailableVacancy 
returned by Compute_Vacancy(p, T) will be equal to or larger than e.
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—* (1) Before the process on replica T, all tasks (or replicas) on processor p  are 
schedulable under preemptive EDF. The process on T  will have no influence 
on those tasks because tasks are processed in ascending order of their 
deadlines. Hence those tasks will still be schedulable, and they will occupy the 
same intervals even if T is dispatched to processor p. (2) 
Compute_Vacancy(p,T) always computes the total length of the available 
vacancies within (r, d). If the total length returned by it is equal to or larger 
than e, this implies that enough vacancies can be found for T. Obviously, it is 
safe to conclude that T  will be schedulable under preemptive EDF. □

Theorem 2.2 With TIT-V tree, the complexity o f Compute_Vacancy() is O(logn), and 
the complexity o f Determine_Replicas_Processors() is
0(mlogn+mlogm), given n tasks and m processors.

Proof: This can be proved by previous complexity analysis. □

2.3.4 Using TIT-V Tree to Construct Feasibility Test for a Generic Resource 
Allocation Algorithm

Further study shows that the TIT-V tree can be applied to a class of real-time scheduling 

systems. Figure 2.12 is the framework of a generic resource allocation algorithm. It is 

similar to the frameworks in [8, 9, 10, 11, 12, 13, 14]. This algorithm can be instantiated 

to achieve different objectives, e.g., maximizing deadline-satisfied ratio [8], maximizing 

utility/benefit [9, 10, 11, 12, 13, 14] (in this case, every task is associated with a utility 

value), maximizing deadline-satisfied ratio of the tasks with high priorities (in this case, 

every task is associated with a priority), etc. Accordingly, a scheduling rule is applied to 

every processor. To maximize deadline-satisfied ratio, EDF is applied; to maximize 

utility, a utility based discipline such as DASA [15] is applied; to maximize the deadline- 

satisfied ratio of the tasks with high priorities, the highest priority first rule is applied.

The sorting in GRAA (see below) will sort tasks according to the objective. For 

example, if the objective is to maximize utility, tasks are sorted in non-increasing order of 

utility value; if the objective is to maximize the deadline-satisfied ratio of the tasks with
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high priorities, tasks are sorted in non-increasing order of priority, etc. GRAA uses the 

same Determine_Replicas_Processors() as that in Figure 2.9, which in turn uses the same 

Compute_Wacancy{) as that in Figure 2.10.

G R A A ( T )

I n p u t :  F= {7',, r2, . . T„)\ /*the task set to be processed*/
O u tp u t :  resource allocation result;

1. S o r t  t a s k s  Ti, T2, T n a c c o r d in g  to  t h e  o b je c t iv e ;
2. F o r  T= T{  to T„‘ d o  /*  process tasks in sorted order */
3. D e te r m in e _ R e p l ic a s _ P r o c e s s o r s ( 7 ) ;

Figure 2.12 The generic resource allocation algorithm.

Theorem 2.3 Under an instantiated GRAA, a replica T -  (r, d, e) can be feasibly 
scheduled on a processor p  i f  and only i f  the total length o f the available 
vacancies returned by Compute_Vacancy(p,T) is equal to or larger than 
e.

Proof: The proof is similar to that of Theorem 2.1 except that tasks are now processed 
according to the objective of the instantiated GRAA. □

Theorem 2.4 Under an instantiated GRAA, the complexity o f  Compute_Vacancy() is 
O(logn), and the complexity o f Determine_Replicas_Processors() is 
0(mlogn+mlogm), given n tasks and m processors.

Proof: Because the instantiated GRAA uses the same Compute_Vacancy() and the same 
Determine,_Replicas_ProcessorsQ as those used in DDRAA, Theorem 2.4 holds. □

2.4 TIT-RL Tree and Its Applications to Real-Time Scheduling Systems

This section studies TIT-RL tree and its application to the online admission control in a 

real-time system. Previous work on how to use novel data structures to improve the 

efficiency of online admission control can be found in [16]. There, an augmented red- 

black tree [7] is used for a real-time service system.

Consider an open system that is designed to provide online real-time services for 

customers. Customers send requests to the system and specify the types of the services
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and the time intervals within which the services are needed. This system can be viewed as 

a model extracted from some applications such as online media service, call admission 

and other service [16, 17, 18, 19, 20, 21]. The system will enforce admission control over 

the requests. The policy of the admission control is simple: if a requested service can be 

feasibly provided, the request is admitted, and a corresponding task will be created to 

provide the specified service within the specified interval, otherwise, it is rejected. 

Suppose tasks are executed non-preemptively, and the system aims to (1) minimize the 

max-flow (i.e., the maximum response time) [21] and (2) maximize the number of 

accepted requests. Because this is an online system, and it has no idea about the future 

requests, it employs some heuristics to process the requests. To achieve the first 

objective, the system always processes a task (created due to a request) at the earliest 

available time (but never earlier than its release time). The point behind this heuristic is 

that the online First In First Out (FIFO) discipline is optimal in minimizing max-flow for 

single processor [21]. To achieve the second objective, it tries to accept every request 

whenever possible since the system has no idea about the future requests.

Accordingly, the online admission control algorithm (ACA) can be constructed as 

Figure 2.13. ACA is used to check whether a new task T  (r, d, e) (created due to a new 

request) can be safely accepted (T can be finished within interval (r, d), and no accepted 

tasks miss their deadlines), given that there are rt accepted tasks, including those that have 

already been released and those that haven’t been released.

Admitted tasks will be put at the appropriate positions in the task queue. 

Whenever a task completes, the task scheduler always picks the next task from the head 

of the queue for execution.
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ACA ( T, r  )

I n p u t : :  7'; /*the task to be tested*/
r= {7 ,, T2 T„}\ /*the set o f the admitted tasks*/

O u tp u t :  accept or reject T\

1 k~ P o s i t io n  (T. r ); /*fmd the appropriate position o f T  according to its release time*/
2 Check the feasibility o f  putting T  at the fcth position;
3 I f  (FEASIBLE)
4 Insert T  into the task queue at the itth position;
5 R e tu r n  FEASIBLE; l* T  is accepted */
6 E ls e
7 F o r  i=(k+l )  ton  d o
8 Check the feasibility o f  putting T  at the tth position;
9 I f  (FEASIBLE)
10 Insert T  into the task queue at the ith position;
11 R e tu r n  FEASIBLE; /*T  is accepted */
12 R e tu r n  INFEASIBLE; !*T is rejected */

Figure 2.13 Online admission control algorithm.

It is easy to see, the complexity of ACA is 0{n2). (Step 1 will take O(logn) time by 

using binary search; step 2 will take 0(n ) time because the system needs to check all 

those tasks that are ordered after T\ step 7 will be executed (n-k-1) times in the worst 

case; hence the complexity of steps 7 and 8 will be 0{n2).)

In the next subsection, the TIT-RL tree is introduced to reduce the complexity of

ACA.

2.4.1 Definition and Properties of the TIT-RL Tree

The TIT-RL tree (Figure 2.14) is an extension of the TIT tree, and it is used for release 

time and laxity analysis. A TIT-RL tree has all the properties of a TIT tree except the 

following.

(1) A non-leaf node in the TIT-RL tree is characterized by a triple {Start, End, 
LR) and a 4-tuple (s_start, unoccupied, s_end, 11). Start and End are the start 
and end points of interval {Start, End), and LR {Last Release time) is the 
release time of the task that is last released within {Start, End). s_start and 
s_end identify the start and end points of current schedule within {Start, End), 
unoccupied is the total unoccupied time units within {s_start, s_end) (please 
note that this interval is contained in {Start, End) and is not necessarily equal
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to interval {Start, End)), and 11 {largest laxity) is the largest laxity of the 
schedule within {s_start, s_end). The largest laxity of a schedule within 
{s_start, s_end) is defined as the maximum number of time units that the 
schedule can be pushed backwards without causing any task to lose its 
deadline. This implies that a task with that much of processing time can be 
safely inserted at sjstart without causing any task to miss its deadline.

(2) The definition of a leaf node is similar to that of a non-leaf node except that 
the triple {Start, End, LR) is replaced with a 4-tuple (r, d, e, LR) (where r, d 
and e are the release time, absolute deadline and execution time of a task T, 
respectively). Please note that the LR in a leaf node is always set to the r of 
this node. Although it is not useful for a leaf node, it will facilitate the 
operations on the TIT-RL tree.

For a leaf node, its parameters are decided as follows.

LR= s_start= r, 
unoccupied= 0; 
s_end- {r+e)\
11= [d-{r+e)\,

(In the following discussion, for a leaf node, its r corresponds to the Start, and its 
d  corresponds to the End.)

For a non-leaf node, its parameters are determined according to those of its child 
(children). Given a non-leaf node Parent having two children Node1 and Node2, 
its parameters are determined as follows.

Parent.Start= Min {Node 1 .Start, Nodel.Start} — (A 1)
Parent.End= Max{Node\.End, Nodel.End) — (A2)
Parent.LR= Max {Node 1 .LR, Nodel .LR} —(A3)
Parent.s_start= M in{Node 1 .s_start, Nodel.s_start) —(A4)

For the s_end, unoccupied and 11 of Parent, they depend on the relationship 
between interval {Nodel.s_start, Nodel.s_end) and interval {Nodel.s_start, 
Nodel.s__end). To be more specific, four cases exist.

Case 1: {Nodel.s_end< Nodel.s_start). They are obtained according to (A5.1), 
(A6.1) and (A7.1), respectively.

Parent. s_end= Nodel.s_end —(A5.1)
Parent.unoccupied= {Nodel .unoccupied-^ Nodel.unoccupied+

Nodel.s_start-Nodel.s_end) —(A6.1)
Parent.ll= Min{Nodel.ll, {Node 1 .unoccupied+Nodel 11+

{Nodel.s_start- Nodel.s_end))} —(A7.1)
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Case 2: (Node2.s_end < Node I.s_s tart). They are obtained according to (A5.2), 
(A6.2) and (A7.2), respectively.

Parent.s_end= Node 1 ,s_end —(A5.2)
Parent.unoccupied= (Nodel.unoccupied+ Node2.unoccupied+

Node 1 ,s_start-Node2.s_end) —(A6.2)
Parent. 11= Min{Node2.ll, (Node2.unoccupied+Node 1.//+

(Node 1 .s_start- Node2.s_end))} —(A7.2)

Case 3: (Node2.s_end > Nodel.sjstart > Node2.s_start). In this case, the overlap 
part of the two intervals needs to be taken into account, and they are 
obtained according to (A5.3), (A6.3) and (A7.3), respectively.

Parent.unoccupied= (Max{ (Node 1 .unoccupied+Node 1 ,s_start
-Node2.s_end), 0}+ Node2.unoccupied) —(A6.3)

Parent. 11= Min{Node2.ll, (Node2.unoccupied+Node 1.11-
(Node2.s_end- Node 1 ,s_start))} — (A7.3)

if ((Node2. s_end-Node 1. s_start) < Node 1. unoccupied)
Parent. s_end= Nodel. s_end —(A5.3)

else Parent.s_end= (Nodel.s_end+Node2.s_end-
Node I ,s_start-Node 1 .unoccupied) —(A5.3)

Case 4: (Nodel.s_end > Node2.s_start > Nodel.s_start). Similar to Case 3, the 
overlap part of the two intervals needs to be taken into account, and they 
are obtained according to (A5.4), (A6.4) and (A7.4), respectively.

Parent.unoccupied= (Max{ (Node2.unoccupied+Node2.s_start
-Nodel.s_end), 0}+ Nodel .unoccupied) —(A6.4)

Parent.11= Min{Nodel.ll, (Nodel.unoccupied+Node2.II-
(Node 1 .s_end- Node2.s_start))} —(A7.4)

if ((Nodel.s_ end-Node2.s_start) < Node2.unoccupied)
Parent.s_end= Node2.s_end —(A5.4)

else Parent.s_end=(Node2.s_end+Node 1 ,s_end-
Node2.s__start-Node2.unoccupied) —(A5.4)
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Figure 2.14 The TIT-RL tree.
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2.4.2 Operations on TIT-RL Tree and Their Complexities

The basic operations on the TIT-RL tree include Insert and Delete/Remove.

Insert is invoked to insert a new task. This operation is similar to the Insert 

operation discussed in Section 2.1 except that the parameters of nodes need to be adjusted 

according to the definition of TIT-RL tree. The adjustment of parameters is conducted 

according to what is discussed in Section 2.4.1.

Delete/Remove is invoked to delete a leaf node from a TIT-RL tree. This 

operation is similar to the Delete/Remove described in Section 2.1 except that the 

parameters of related nodes need to be adjusted according to the definition of TIT-RL 

tree after the removal of the leaf node. The basic idea involved in the adjustment is 

similar to what is discussed in Section 2.4.1.

It is easy to see that the complexities of both Insert and Delete/Remove are 

O(logn), given a TIT-RL tree containing n tasks.

2.4.3 Using TIT-RL Tree to Construct ACA

Now, the TIT-RL tree is employed to reconstruct the ACA algorithm (Figure 2.13). The 

pseudo code of the TIT-RL tree based algorithm is listed in Figure 2.15. The basic idea of 

the new algorithm is the same as that contained in Figure 2.13. In Figure 2.15, ACA first 

checks some simple cases (steps 2-7). More complicated cases are processed by steps 8- 

32. Basically, it first finds the appropriate position for a new task T  (step 9) and then 

checks whether it can be safely inserted into that position (steps 12-27). The checking 

procedure starts from Temp (this is the task before which the new task is to be inserted) 

and goes up the tree. If any node indicates deadline miss (i.e., the updated largest laxity 

of the node is less than zero), ACA stops current checking procedure and attempts to
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insert the new task before the next task (step 17). This invokes a new checking procedure. 

If T can not be inserted into any position, it is rejected (steps 14 and 29). Otherwise, it is 

inserted before First (step 23) or inserted at the end of the task queue (step 31). See step 

23 and step 31, when the new node is inserted in the queue, its parameters may be 

adjusted if needed. The adjustment is used to make the updated tree conform to the 

definition of TIT-RL tree. However, it never changes the actual executions of tasks, nor 

does it have any impact on the admission of future tasks.

Figure 2.16 shows how the test is conducted, given a TIT-RL tree and a new task 

(6, 10, 1). Please note that ACA updates the parameters of some nodes during the test. 

Whether the test succeeds or not, those parameters that are changed need to be restored. 

This procedure can be avoided by using two copies of parameters. One copy is used only 

for test, and its values are copied from the other one. The copy operation is needed only 

for those nodes whose parameters are changed in the test. During the test, the parameters 

of every related node are first copied and then changed.

Definition 2.1 (Safe Acceptance) A task T— (r, d, e) can be safely accepted if  a suitable 
position (on the TIT-RL tree) can be found fo r  T, and it can be inserted 
there without causing any task (including T itself) to miss its deadline.

Theorem  2.5 A new task T— (r, d, e) can be safely accepted by the system if  and only if 
ACA returns TRUE when it processes the corresponding TIT-RL tree.

Proof: *— (1) That T  is schedulable implies that a position, which is the earliest suitable 
position according to current system status, is available for T. (2) ACA 
always tries to find the earliest suitable position for T. Hence, ACA will be 
able to find that position, successfully insert T  there and return TRUE.

—> (1) Before the test, all existing tasks are schedulable. (2) When ACA conducts 
the test, it always tries to find the earliest suitable position for the new task 
such that the new task can be safely inserted there (i.e., it does not cause 
any existing task to miss its deadline, and there is enough vacancy to
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accommodate it). ACA returns TRUE implies that such a position is 
available for T. Hence it can be safely accepted. □

A C A  ( Titrl, T  )

I n p u t :  Titrl; /*the TIT-RL tree that contains all accepted tasks */
7'; /*the new task to be tested*/

O u tp u t :  TRUE/FALSE; !*T  is admitted/rejected */

1 Create a new node NewNode  according to T\
2 C a s e  1: ( T . d <  Titrl. root. Start)
3 Insert NewNode into the front o f the queue;
4 R e tu r n  T R U E ;
5 C a s e  2: (T. r > Titrl. root. End)
6 Insert NewNode into the end o f the queue;
7 R e tu r n  TRUE;
8 C a s e  3: (O ther cases)
9 Search down the tree, and find the first leaf node First such that

(First. r > T .  r) o r  ((First, r == T. r) a n d  (First. d > T .  d))\
10 I f  (NOT FOUND)
11 G o to  step 28;
12  Temp = First',
13 I f  ((Temp—* p re v .s_ e n d + T .e ) > T . d )
14 R e tu r n  FALSE; /*the new task can not be safely accepted*/
15 Push in T. e time units before Temp, and adjust its parameters;
16 I f  (Temp. II < 0) /*implies deadline miss*/
17 First = First—>next\ /*attempt to insert the new task before the next task in the task queue*/
18 I f  (First =  NULL) /*implies the new task can not be inserted before ANY task in the task queue*/
19 G o to  step 28;
2 0  E ls e  G o to  step 12;
21 Tem p=Tem p—>parent; /*go upward the tree*/
22 I f  (Temp == NULL) /*implies the test succeeds*/
23 Adjust the parameters o f  NewNode, and insert NewNode  before First',
24 R e t u r n  TRUE;
25 E ls e
26 Adjust the parameters o f  Temp-,
27  G o to  step 16;
28 I f  ((Titrl. root. s_end  + T . e ) >  T. d)
29 R e tu r n  FALSE; /*the new task can not be safely accepted*/
30  E ls e
31 Adjust the parameters o f NewNode, and insert NewNode  into the end o f the queue;
32  R e tu r n  T R U E ;

Figure 2.15 TIT-RL tree based online admission control algorithm.
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(b)

Figure 2.16 Feasibility test.
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Theorem 2.6 Given n existing tasks in the system, the complexity ofACA is O(nlogn).

Proof: It is easy to see from Figure 2.15, the running time of one checking procedure in 
ACA is bounded by the height of the tree, i.e., 0(logn). In the worst case, the 
checking procedure will be invoked at most n times. Hence the complexity of 
ACA is O(nlogn). □

The TIT-RL tree based ACA algorithm can also be applied to some

parallel/distributed scheduling systems that are designed to achieve the same objectives

as the service system described before. This can be easily accomplished by using the

TIT-RL tree based ACA as a building block on every processor.
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CHAPTER 3

NEW UTILITY ACCRUAL MODEL FOR RESOURCE ALLOCATION IN 
ASYNCHRONOUS REAL-TIME DISTRIBUTED SYSTEMS

In Distributed Real-Time Systems (DRTSs), communication cost is no longer negligible. 

Whether activities can be completed in time depends on whether the computations and 

the communications involved in them can be completed in a timely way. Hence 

communication, in terms of meeting timing constraint, is as important a factor as 

computation in DRTSs. Furthermore, the timeliness of computation relies on that of 

communication, and vice versa. This property requires that the resource allocation in 

DRTSs fully realize the interplay between computation and communication.

In the literature of resource scheduling for distributed real-time systems, a lot of 

work was devoted to the issues of minimizing response time [23, 24], load balancing that 

seeks to distribute the workload over nodes in a balanced way [25, 26], load sharing that 

tries to transfer workload from overloaded nodes to under-loaded nodes [27, 28, 29, 30] 

and maximizing the probability of meeting task deadlines [31]. Meanwhile, some work 

concentrated on minimizing the execution time of computation, or minimizing the 

communication cost, or both [32, 33, 34, 35].

In recent years, the utility/benefit related models have been intensively studied 

and applied to many DRTSs.

In [36, 37], a model called Q-RAM (QoS-based Resource Allocation Model) is 

proposed. Utility under Q-RAM is determined based on the Quality of Service (QoS) 

along multiple QoS dimensions (e.g., timeliness, reliability, security, and data quality). 

The QoS along every dimension depends on the amount of resource(s), the larger the

32
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amount of resource, the higher the utility. For every application, a utility function is 

defined. Resources are apportioned among applications in a way such that the system 

utility is maximized. Applications are then set up according to the apportionment.

Similarly, in [38, 39], a utility model is proposed for adaptive resource 

management in dynamic distributed real-time systems. This model is further studied in 

[40, 41]. Utility under this model is defined as a function of extrinsic attributes and 

service attributes (or QoS levels). Resource allocation under this model is to find some 

settings of extrinsic and service attributes such that the system utility is maximized. 

Applications are then set up according to these settings.

The Jensen’s Utility Accrual Models (UAM) [42, 43] takes a different approach 

for resource scheduling. Firstly, UAM focuses on timeliness, which is the main concern 

in almost all real-time systems. Accordingly, utility under UAM is defined as a function 

of the completion time of a task. For example, a utility function under UAM may be 

defined as a function of the completion time of a computation (task) [15] or a 

communication (task) [44], Secondly, resource allocation under UAM is to find a 

schedule through scheduling simulation analysis such that the system utility is 

maximized. Extensive research has been conducted under UAM. For example, in [9, 10, 

11, 12, 13, 14, 15, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], 

various techniques and algorithms are investigated under UAM. It was shown that UAM 

is very effective for resource allocation in soft real-time systems [48, 49, 50], especially 

under overload situations, which are usually a primary concern in most real-time systems.

To accommodate the dependency relationship between tasks, an extended UAM 

called Joint Utility Accrual Model (JUAM) is proposed in [45]. Under JUAM, the joint
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utility of a task is defined as a function of the completion-time utility and progressive 

utility of some other tasks. The completion-time utility and progressive utility of a task 

depend on its completion time and progress.

In DRTSs, the timeliness of activities is inherently determined by the interplay 

between computations and communications. Nevertheless, the utility functions under 

UAM are mostly constructed based on computation or communication, and the interplay 

between computation and communication is not reflected in utility functions. 

Consequently, the interplay between computation and communication is not effectively 

and fully explored by resource scheduling under UAM. As resource scheduling model is 

the key component for ensuring system timeliness, it must capture and characterize the 

interplay between computation and communication. Motivated by this key observation, 

the author proposes a new utility accrual model called UAM+, which is constructed based 

on the timeliness of computation and communication. A utility function under UAM+ is 

defined as a function of the completion times of a computation and a communication, and 

the interplay between the computation and communication is also characterized in the 

function. Accordingly, resource managers under UAM+ are guided to perform resource 

allocation by exploring the interplay between computation and communication. The 

author also develops a resource allocation algorithm called 1AUASA (see Section 3.4) to 

validate the effectiveness of the UAM+ model. Note that the interplay relationship is 

different from the joint dependency relationship under JUAM [45]. Firstly, the joint 

utility of a dependent task (say a communication task) is a function of the progressive 

utility and completion-time utility of a depended task (say a computation task), while 

utility under UAM+ is determined based on the completion times of the computation and
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the communication. Secondly, under JUAM, the completion-time utility and progressive 

utility of the depended task depend on its completion time and progress and do not 

depend on the dependent task, while under UAM+, utility can not be determined solely 

based on the completion time of a computation or a communication because utility is a 

function of the completion times of the computation and communication.

3.1 System Model

Assume a distributed real-time system that contains n (homogeneous or heterogeneous) 

processors. These processors are interconnected by a network. There is a (logical) 

channel/connection from every processor to each of the other processors. On every 

processor, the tasks are preemptively scheduled according to their priorities, i.e., highest 

priority first. On every channel, the messages are processed according to their tag 

numbers. A message with tag number K  must wait until the message with tag number (K- 

1) is processed. When a message is transmitted over a channel, the end-to-end 

communication cost of it is directly proportional to the volume of the data in the message. 

Unless mentioned otherwise, it is assumed that it will take one unit of time to transmit 

one unit of data. Note that UAM+ does not rely on any specifics of the task scheduling 

policy, the message scheduling policy, the processor, and the underlying network. As is 

shown in Section 3.4, UAM+ only provides guidelines for resource managers by 

specifying the constraints on communication and computation and characterizing the 

interplay between them. The problem of how to explore the interplay and how to allocate 

specific resources to meet the constraints is addressed by resource managers, and is 

outside the scope of the model. Accordingly, a relatively simple system model outlined
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above is assumed; this allows the author to focus on the evaluation of the UAM+ model 

rather than the discussion of the details of a complicated system. The author notes that 

such a methodology is commonly adopted in the literature. For example, in [2] (and the 

references therein), when the schedulability of a group of tasks is studied, only the 

execution of these tasks are counted; no switching overhead, contention on resources, or 

other overheads are assumed. These assumptions allow the schedulability test to be 

studied without being involved in the lengthy discussion of other specifics of the system. 

Similarly, when conducting dynamic voltage-frequency scaling, people assume that the 

energy expense and time overhead of voltage-frequency switching is negligible [60, 61, 

62], This enables them to concentrate on their models and algorithms.

3.2 Task, Message, and Scheduling Models

Suppose groups of tasks and their precedence relationships are characterized by Directed 

Acyclic Graphs (DAGs). Nodes and edges in a DAG (Figure 3.1) represent tasks and the 

precedence relationships among tasks. (Throughout this chapter, node and task are used 

interchangeably.) Furthermore, it is assumed the precedence relationship is established 

only due to data dependence (i.e., the successor has to wait for the completion of its 

predecessors only because it needs the data from its predecessors). Data is sent from a 

predecessor to a successor through message transmission. The weight associated with 

each edge in the graph represents the data volume that will be transmitted from the 

corresponding predecessor to the corresponding successor. For example, there will be v34 

units of data to be sent from jT3 to r 4.
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A task Ti is characterized by a triple (r„ p„ dj), where r„ p, and dt are the release 

time, processing time and relative deadline of 7), respectively. A task is released only 

after it has received all required data from its predecessors. For those tasks that have no 

predecessors, their release times are set to the time when the task graph is released. 

Similarly, a message My (corresponds to Vy) is characterized by a triple (mry, Vy, mdy), 

where mry is the time when the data is ready, and Vy and mdij are the data volume and 

relative deadline of My, respectively. For a message My, its release time is decided 

according to /nry=(r,■+/}), where r, and f  are the release time and relative finishing time of 

Ti, respectively. For a task T  having k predecessors, its release time is decided according 

to ri=max{(mr'ji+fji)}, where 1< j  <k, mr)i and /), are the release time and relative 

finishing time of M';„ respectively. If 7, and T) are dispatched to the same processor, the 

communication cost is zero, i.e., fp  =0.

Figure 3.1 Task graph with precedence relationships.

A scheduling element is defined as the combination of the computation (the task) 

and communication (the message) along a directed edge (excluding the successor task) in 

the DAG. If a node in the graph has no successor, the corresponding scheduling element 

contains no communication. A 5-tuple is used to characterize a scheduling element Eij
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(corresponds to T, —>-7)): (r,7, COMP_Dij, COMM_Djj, com ptJ, com m y-), where r(jl is the 

release time of task T, (i.e., r,y= r,), COM P_DtJ and COMM_Djj are the relative deadlines 

of the computation and communication of Eij, respectively (i.e., COMP_Djj= dt and 

COMM_Dij= mdij), compij is the processing time of the computation of E,j (i.e., compij= 

Pi), and commtj is the data volume that needs to be transmitted by EtJ (i.e., com m t] =Vy). 

For example, in Figure 3.1, £ 23= (r2, d2, m d22, p 2, v23). For £, = {£,,*1, £„t2, •••, £„ffi}(i.e., 

£, is the set of scheduling elements that originate from the same node 7) in the DAG), all 

the scheduling elements in it have the same release time, processing time of computation 

and relative deadline of computation but may have different relative deadlines of 

communications and data volume. In addition, all scheduling elements will have the same 

completion time of computation, which is decided by the completion time of task T,.

3.3 The New Utility Accrual Model

3.3.1 Utility Function

Assume a simple utility function under UAM. Figure 3.2(a) is the utility function of a 

task Ti. COMPi is the timing constraint (for achieving positive utility) on 7). Throughout 

this chapter, COMPi is assumed to be equal to the deadline of 7). (It must be pointed out 

that the timing constraint on a task is not necessary equal to its deadline. In a soft real­

time system, a computation may miss its deadline but still obtain some positive utility 

[43].) As is shown in Figure 3.2(a), 7) makes contribution to the system only if it could 

complete no later than COMPi.
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comp

U,
utility Uj (comp)
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COMP,

comp+comm=
(COM P_Dij+COMM_D

COMP,,

comm

utility COM MJOy
comp axis: the completion time of computation; 
comm axis: the completion time of

communication;
(a) Utility function (for F,) under UAM (b)Utility function (for E J  under UAM+ 

Figure 3.2 Utility functions.

Now, suppose Tt needs to send a message My to another task Tj. The deadline of 

Mij is COMMJDij. Under UAM+, a scheduling element Ey will be defined, and the utility 

function for it will be defined as in Figure 3.2(b). As is shown in Figure 3.2(b), the utility 

function (u jco m p , comm)) of ELJ is defined as a function of the completion time (the 

difference between the time when a computation/communication is released and the time 

when it is finished) of the computation and that of the communication. COMPij and 

COMMij are the timing constraints on computation and communication for achieving 

positive utility. Note that COMPy is different from COMP_Di)■ The latter marks the 

deadline of the computation of £y while the former marks the latest time point by which 

the computation of E,j should complete so as to achieve positive utility. Similarly, 

COMMij is different from COMMJDij (It must be pointed out that if COMPi is not equal 

to the deadline of 7), COMP_Dij in Figure 3.2(b) should be replaced with COMP,.) The 

introduction of COMPy and COM  My will make it natural to construct more complicated
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utility functions in soft real-time systems. (More complicated utility functions can be 

defined according to system level analysis [43].)

From Figure 3.2(b), two features of the utility function are observed under UAM+: 

(1) the utility that can be achieved relies not only on the completion time of the 

computation but also on that of the communication, and (2) the interplay between 

computation and communication has critical influence on determining the timeliness of 

computation and that of communication (and thus the utility obtained) (for example, a 

short completion time of computation will make a long completion time of 

communication acceptable (without loss of utility), and vice versa). Given a point (cpij, 

crrtij) (where cp,j and cm(J are the completion time of the computation and that of the 

communication, respectively), if it is bounded in the shaded region (i.e., it satisfies 

(cpij+crriij) < (COMP_Dij+COMM_Dij)), Ey will contribute positive utility (Uy) to the 

system. This provides a framework for resource managers to optimize resource allocation 

by exploring the interplay between computation and communication. By contrast, the 

resource managers under UAM will check whether {cptJ < CO M P_D i}) and (cm/,- < 

COMMJDij) are met or not. If either of them can not be met, no utility can be obtained 

even if (cpy+ cm j is far less than (COMP_Dij+COMM_Dij).

Because the construction of the utility function is an engineering approach [43], 

the author will not dwell on this topic in this dissertation.

3.3.2 Utility Accrual Criteria

Given a task graph containing a group of tasks T= {T), 72, . . . ,  T„] and a processor set P= 

{^i, Pit ■ Pm} that is connected by a network, the author is interested in the goal that 

the resource managers should try to achieve and how to achieve the goal. The ability of a
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model to provide unified criteria for resource allocation is not only central to but also 

critical for distributed real-time systems.

Like UAM, timing constraints under UAM+ are characterized in utility functions, 

and the goal for resource allocation is to maximize system-wide utility. Under UAM+, 

this problem can be formally expressed as follows. (Suppose the utility function of an 

element Etj is defined as that in Figure 3.2(b).)

Find a mapping M: T—>P s.t.

Utility = Max { £  (U i} x X ij)}
i=l y=1

where,
(  1 i f  { ( cp „ < COMP „ ) A  (cm „ < COMM t) )

Xij =  <
cp ,, x  COMM

a  ((— i  2 .  + cm  ,,)  < COMM ,, )
COMP  „ " “

A ( t / „  > 0))

0 otherwise;

cpif. the completion time of the computation of El}\ 
cmif. the completion time of the communication of El}\

Unlike UAM, UAM+ is constructed based on the timeliness of computation and 

communication. The interplay between computation and communication is also reflected 

in the utility function. This requires resource managers under UAM+ treat computation 

and communication as a whole, try to explore the interplay between them, and optimize 

resource allocation along two dimensions, i.e., computation and communication.

By contrast, a utility function under UAM is defined based on the timeliness of a 

computation or a communication, and the interplay between computation and 

communication is not reflected in the utility function. As a result, resource managers 

under UAM strive for meeting the timing constraints on computation and communication
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separately. The following example will further illustrate this issue. Consider a simple 

scenario, where there are two tasks (computations) 7) and 7), and 7) needs to send a 

message M,; to 7). Suppose Tt can be finished very quickly but My will miss its deadline 

according to current system status; however, 7) and My as a whole is still acceptable and 

will not cause any utility loss from the system level view. This scenario will typically fail 

the feasibility test under UAM.

3.4 Interplay-Aware Utility Accrual Scheduling Algorithm

To analyze, evaluate and validate the effectiveness of the UAM+ model, this section 

presents a heuristic resource allocation algorithm IAUASA (Interplay-Aware Utility 

Accrual Scheduling Algorithm). IAUASA is constructed under UAM+ and aims to 

maximize system-wide utility. Because the optimization problem of mapping tasks to 

processors is NP-hard, IAUASA attempts to find some suboptimal solutions through a 

heuristic approach. The algorithm is listed in Figure 3.3. To help describe the algorithm, 

the example in Figure 3.1 will be referred to throughout this section. The parameters for 

Figure 3.1 are listed in Table 3.2.

3.4.1 The Algorithm

Before proceeding to the detailed discussion on the algorithm, we first introduce an 

invalid node. A node is said to be invalid if the scheduling element set that is constructed 

based on it is currently identified as the best candidate set, but some elements in the set 

can not be feasibly scheduled. Thus the invalid flag is used to indicate that this node 

should not be selected immediately after this round; otherwise the same set as last will be 

constructed.
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The frameworks of algorithm IAUASA and its subroutines are listed in Figure 3.3.

Given a task graph DAGS, IAUASA will repeatedly process the remaining part of 

the task graph until every node is processed. The process is conducted according to two 

cases.

Case 1: A node (BestNode), whose current predecessor element set has the largest 

total utility, can be found (steps 2-8, IAUASAQ). For example, in Figure 3.1, node T4 will 

be selected in the first round because its predecessor element set {£oi, £ 0 2 , £ 13, £ 2 3 , £ 2 4* 

£ 3 4 , £ 4 4 } currently has the largest total utility among all predecessor element sets. (For 

£ 4 4 , £ 4  is the predecessor of itself.) The schedulability of this element set is then checked 

(step 9, IAUASAQ). If the schedulability test is successful, IAUASA will process related 

tasks and messages according to the schedulability test result (steps 12-20, IAUASAQ). 

For every related task, IAUASA marks it as processed, dispatches it to the processor 

determined during the schedulability test, and assigns a priority to it according to the 

order it is processed on that processor during the schedulability test. For every related 

message, IAUASA dispatches it to the channel determined during the schedulability test, 

and assigns a tag number to it according to the order it is processed on that channel 

during the schedulability test. (Note that a message will not exist until the corresponding 

task creates it.)
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Algorithm: IAUASA (DAG,)

Input: DAG,:
Output: scheduling result:
1 Repeat
2 MaxUtilitv= 0;
3 for (every unprocessed and valid node T,) do
4 Utility= ComputeSupportingUtility(7) ElementSet);
5 If (Utility > MaxUtility)
& BeslNode= Tj,
7 MaxUtility= Utility,
8 If (ElementSet 7 EMPTY)
9 Results SchedulabilityTest (ElementSet, BestNode)-,
10 If (7?e.tu/r=lN FEASIBLE)
11 Mark BestNode as invalid node;
12 Else
13 Clear all invalid flags;
14 For (every element e,, in ElementSet)
13 If (task T, is not marked as processed)
16 Mark T, as processed',
17 Assign a priority to 71;
18 Dispatch 7) to corresponding processor;
19 Assign a tag number to message M,,-,
20 Dispatch M,j to corresponding channel;
21 Else
22 MaxUtility= 0;
23 For (every unprocessed, invalid and ready T,) do
24 Utility= ComputeSupportedUtility (T, );
25 If (Utility > MaxUtility)
26 BestNode= Tj,
27 MaxUtility= Utility-,
28 Processor= DetermineProcessor ( BestNode),
29 Clear all invalid flags;
30 Mark BestNode as processed',
31 Assign a priority to BestNode;
32 Dispatch BestNode to Processor;
33 For (every element e, do
34 Assign a tag number to message M , , Btasod,;
35 Dispatch to corresponding channel;
36 Until (every node in DAG, is processed)-.

Subroutine: FindProcessor (71)

Input: Tj.
Output: processor number or UNDEFINED
1 MinCompComm— oo;
2 MinProcessor= UN DEFINED;
3 Sur rc.v.s-FALSE;
4 I 'or (every processor P ) do
5 CP, -  CompCompletionTime (T,, P);
6 TempCompComm= oo;
7 Succcw=TR UE;
8 For (every element e//) do
9 CM,, = CommCompletionTime (M,,);
10 If ((CM,,+ CP,) > (COMP_Dj,+ COMM_D,,))
11 Success=FALSE;
12 Exit the inner for loop;
13 Else If ((CM,, + CP,) < TempCompComm)
14 TempCompComm = (CM,, + CP,)-,
15 If ((TempCompComm<MinCompCom)

and (Sucre«=TRUE))
16 MinCompComm= TempCompComm;
17 MinProcessor= P;
18 Return <MinProcessor>\

Subroutine: ComputeSupportingUtility (T„ ElementSel)

Input: T,, ElementSel,
Output: ElementSel, TempU',
'♦the immediate predecessors of a task are linked by a list*/
1 TempU= 0;
2 Tj .— the first predecessor of 7',;
3 While (7)# NULL)
4 Add element e,, to ElementSet;
5 TempU- TempU + U ji;
6 If (Tj is neither processed nor temporarily processed)
7 I Mark 7} as temporarily processed',

• TempU +=OomputeSupportingUtility (7) .ElementSet)-, 
Tj «— the next predecessor of 7’,;

10 Return <ElementSet,TempU>;

Subroutine: SchedulabilityTest (ElementSet, BestNode )

Input: ElementSet, BestNode-,
Output: FEASIBLE/INFEASIBLE;
1 While (ElementSet + NULL)
2 Take element e„ from ElementSet if all the predec-
3 essorsofT,- are processed or temporarily processed;
4 If (FindProcessor (7,) ^UNDEFINED)
5 Remove every eki from ElementSel;
6 Else
7 Return <INFEAS1BLE>;

/♦find suitable processor for task BestNode */
8 If (FindProcessor (BestNode) C UNDEFINED)
9 Return <FEASIBLE>;
10 Else
11 Return <INFEASIBLE>;

Subroutine: ComputeSupportedUtility (T, )

Input: 7,;
Output: TempU-,
'♦the immediate successors of a task are linked by a list*/
1 TempU= 0;
2 Tj «— the first succcessor of 7);
3 While (7)* NULL)
4 TempU= TempU + Ujj;
5 If (7) is not temporarily processed)
6 Mark Tj as temporarily processed',
7 I TempU=TempU + ComputeSupportedUtility (T/y,

Tj «— the next successor of 7);
Return <TempU >;

Subroutine: DetermineProcessor (T,) 

Input: Tc,
Output: din!’races sor.
1 MinLose= oo;
2 For (every processor P ) do
3 TempLose- 0;
4 For (every element e,,) do
5 CM,, -  CommCompletionTime (M„),
6 If ((CM,, + CP,) > (COMP D„+ COMM_D„))
7 TempLose= TempLose + Ujj.

8 If (TempLose<MinLose)
9 MinLose= TempLose,
10 I MinProcessor= P,
11 Return < MinProcessor >;

Figure 3.3 IAUASA scheduling algorithm.
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Case 2: A suitable node that meets the criteria of Case 1 can not be found. In this 

case, IAUASA tries to find an unprocessed, invalid but ready node (BestNode) such that 

all of its predecessors have been processed, and its successor element set currently has 

the largest total utility (steps 22-27, IAUASA ()). The rationale behind this idea is that 

because BestNode currently supports the largest utility, IAUASA attempts to schedule it 

with the hope to achieve the largest potential utility because all utility supported by 

BestNode is unachievable without processing of it. Once BestNode is found, IAUASA 

tries to find a suitable processor for it. IAUASA then marks BestNode as processed, 

dispatches it to that processor, and assigns a priority to it. Additionally, IAUASA also 

assigns a tag number to every related message, and dispatches it to corresponding 

channel.

Given a node BestNode and its predecessor element set ElementSet, subroutine 

SchedulabilityTest() is used to find suitable channels and processors for related messages 

and tasks. Basically, SchedulabilityTestQ first picks a task 7’, (step 2, 

SchedulabilityTestQ), and then tries to find a processor for it. If such a processor is found, 

SchedulabilityTestQ removes all predecessor elements of Tt from ElementSet (step 5, 

SchedulabilityTestQ). This procedure repeats until all elements in ElementSet are 

checked. SchedulabilityTestQ then returns FEASIBILE, which indicates test success. If, 

however, during the test, any element can not be successfully processed, 

SchedulabilityTestQ terminates, and returns INFEASIBLE, which indicates test failure.

Given a task T„ subroutine ComputeSupportingUtilityQ is used to compute the 

total utility of the predecessor elements of Tt. For example, in Figure 3.1, the predecessor
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elements of T4 are £ 0 1 , £ 0 2 , £ 13, £ 2 3 , £ 2 4 , £ 3 4  and £ 4 4 , and the collective utility of its 

predecessor elements is 240 units according to Table 3.2.

Given a task T„ subroutine ComputeSupportedUtility() is used to compute the 

total utility of the successor elements of £ . For example, in Figure 3.1, the successor 

elements of Ti are £ 2 3 , £ 2 4 , £ 3 4  and £ 4 4 , and the collective utility of its successor elements 

is 187 units according to Table 3.2.

Given a node BestNode, subroutine DetermineProcessorQ is used to find a 

suitable processor for BestNode such that it will result in the minimum utility loss if 

BestNode is dispatched to it. Because BestNode is an invalid node, this implies that 

whichever processor it is dispatched to, at least one element (say EXtBestNode) will lose its 

utility. Hence, DetermineProcessor() tries to find a suitable processor so as to minimize 

the utility loss.

Given a node T„ subroutine FindProcessorQ is used to find a suitable processor 

for p  such that all the communications between T, and its predecessors can be finished in 

a timely way (that is, for any predecessor 7) of T„ (cpji, cmji) is bounded in the valid 

region defined by utility function Ujt, where cpp is the completion time of 7) and cmyt is 

the completion time of the communication between Tj and T i ), and T, completes earlier 

on this processor than on any of other processors. If such processor does not exist, 

UNDEFINED is returned by FindProcessorQ.

See subroutine DetermineProcessorQ. CommCompletionTime(Mjj) computes the 

completion time of message My, on the channel from Pj to P, where Pj is the processor to 

which task Tj is dispatched. Because messages on every channel are processed according 

to their tag numbers that are determined according to the order in which the messages are
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dispatched to the channel, CommCompletionTimeQMji) can obtain the absolute finishing 

time of Mji by simply adding the end-to-end communication cost of MJt to the absolute 

finishing time of the last message on the channel. The completion time of M,, is then 

obtained by subtracting its release time from its absolute finishing time.

See subroutine FindProcessorQ. CompCompletionTimeQTj, P ) is used to compute 

the completion time of task Tt on processor P. Specifically, CompCompletionTimeQ) 

computes the absolute finishing time of 7) by simulating a preemptive priority scheduler 

to process all the tasks on processor P. The completion time of T, is then obtained by 

subtracting its release time from its absolute finishing time.

3.4.2 Complexity Analysis

Given m processors and a task graph containing n nodes and / edges, the complexities of 

IAUASA and its subroutines are listed in Table 3.1.

Table 3.1 Complexity Analysis

IAUASAQ) OQlmn2Qn\ogn+l))
ComputeSupportingUtilityQ) OQl)
ComputeSupportedUtilityQ) OQl)
SchedulabilityTestQ) OQlmQn\ogn+l))
DetermineProcessor( ) OQmn)
FindProcessorQ ) OQmQnlogn+l))
CompCompletionTimeQ ) O(nlogn)
CommCompletionTimeQ ) 0 ( 1 )

The complexity of CompCompletionTimeQ is OQn\ogn) because the process on n 

tasks according to preemptive priority policy can be done in 0(nlogn) time.

The complexity of CommCompletionTimeQ is 0(1) because it can be done within 

constant number of steps.
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The complexity of DetermineProcessor() is 0(mn) because there are m 

processors, there are at most n immediate predecessor elements for a given node or task, 

and the complexity of CommCompletionTime() is 0(1).

The complexity of FindProcessorQ is 0(mn\ogn) because there are m processors, 

there are at most n immediate predecessor elements for a given node/task, the complexity 

of CompCompletionTimeQ is O(nlogn), and the complexity of CommCompletionTimeQ is 

0 ( 1).

The complexity of ComputeSupportingUtilityQ is 0(1) because there are at most I 

predecessor elements for a given node/task.

The complexity of ComputeSupportedUtilityQ is 0(1) because there are at most I 

successor elements for a given node/task.

The complexity of SchedulabilityTestQ is 0(lmn\ogn) because there are at most / 

elements in ElementSet, and the complexity of FindProcessorQ is 0(mn\ogn).

The complexity of IAUASAQ is 0(lm n3\ogn) because the Repeat-Until loop can 

be repeated at most n2 times, and the complexity of SchedulabilityTestQ is 0(lmn\ogn).

3.4.3 An Example

Given three processors and the task graph in Figure 3.1 with parameter settings in Table 

3.2, the scheduling result produced by IAUASA is shown in Figure 3.4. Note that the 

utility associated with element e$$ is lost because its computation can not be finished by 

time 8 . The whole process is conducted as follows.

At the first round, node £ 4  is selected since its predecessor element set {£oi, £ 0 2 , 

£ 13, £ 2 3 , £ 2 4 , £ 3 4 , £ 4 4 } currently has the largest total utility. The schedulability of this set 

is then checked. At first, task T0 is picked because it has no unprocessed predecessor. To
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can be dispatched to processor P0, and it can be completed at time 3. After F0 is 

processed, T\ and T2 can be picked (because their predecessor To is processed). Suppose 

that Ti is picked first, and it is dispatched to processor Po. (In this way, the 

communication cost between T\ and T0 could be avoided, and T\ has the same completion 

time on P 0 as it has on Pi or P 2.) For element £ 0 1 , the completion times of the 

computation and communication of it are 3 and 0. It is easy to see that point (3, 0) is 

bounded in the valid region of utility function Uo\- Next, T2 can be picked. This task can 

be dispatched to either Pi or P 2 because it will have identical completion time on Pi and 

P 2 and its completion time on P\ or P 2 will be less than that on Po due to Pi. Suppose that 

P2 is dispatched to Pi. The communication cost between P2 and To will be 2 time units 

according to Table 3.2. Hence, P2 is released at time (3+2)=5. For element £ 0 2 , the 

completion times of the computation and communication of it are 3 and 2. It is easy to 

see that point (3, 2) is bounded in the valid region of utility function U0 2 . After P2 is 

processed, P3 can be picked, and it is dispatched to Pi to avoid the communication cost 

between P2 and it. Because the communication cost between T\ and P3 is 2, £ 3  is released 

at time 9. Next, P4 is dispatched to Pi to avoid the communication cost between P3 and it. 

It is easy to check that the completion times of the computation and communication of 

every element (£ 13, £ 23, £ 24, £ 3 4  and £ 44) is bounded in the valid region of the 

corresponding utility function.

At the second round, node To is selected since the total utility of its predecessor 

element set {£ 0 6 . £ 6 6 } is larger than that of P5’s predecessor element set {£ 0 5 , £ 5 5 }. To is 

dispatched to processor P 2.
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At the third round, node £ 5  is selected, and the schedulability of element set {£0 5 , 

£ 5 5 } is checked. Unfortunately, £ 5 5  can not be successfully processed due to £5 .

At the last round, node £ 5  is selected, and the schedulability of element set {£ 0 5 } 

is checked (note that £ 5 5  is not in the element set). £ 5  is dispatched to processor F0 

because its completion time on P0 is the smallest.

Table 3.2 Parameters for the Task Graph in Figure 3.1

1 2 3 4 5 6

0

(1,8,2,8.6 
,3,2)

(11,8,2, 
8,6,3,2)

(21,8,2, 
8,6,3,2)

(31,8,2,8,
6,3,3)

1
(41,6,2, 
6,4,4,2)

2
(51,5,2, 
5,3,3,2)

(61,5,2, 
5,3,3,2)

3
(71,5,2, 
5,3,3,2)

4
(4,0,0,4, 
4,4,0)

5
(5,0,0,5,5 
,5,0)

6
(6,0,0,6,6  
,6,0)

(In Table 3.2, every 7-tuple (U lp COMMij, COMM_Dij, CO M Pu, COM P_Dijt 
compij, commij) defines the parameters for a scheduling element £,,. For example, 
7-tuple (1, 8, 2, 8, 6, 3, 2) in Table 3.2 defines the parameters for £ 0 1  with t/oi= 1, 
COMMoi=  8, COMM_Doi=  2, COMPoi= 8, COMP_Dq\=  6, compo\= 3 and 
comm.Q\ = 2.)

0 16

To T, o x t , : - : - : -

T, T, t 4

... 
h?

Figure 3.4 IAUASA scheduling.
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3.5 Simulation Analysis

To see how well resource allocation can be achieved under UAM+, extensive simulations 

were conducted with IAUASA, and its performance is compared with that of two other 

resource allocation algorithms, i.e., DASA_variant and COMM.

DASA_variant is developed according to UAM model, and is a variant of DAS A 

[15]. DASA is constructed under UAM and has been widely used for resource allocation 

in distributed real-time systems [9, 10, 11, 12, 13, 14], DASA_variant works in a similar 

way to IAUASA except: (1) whenever feasible, it seeks to allocate resources to the task set 

that currently has the highest collective utility density, and (2) it is concerned about 

meeting deadlines when processing communications. The abovementioned task set is 

constructed by first selecting an unprocessed task and then recursively adding all its 

direct and indirect predecessors to the set. The collective utility density is defined as the 

ratio of the total utility of the tasks in the set to the total processing time of them. The 

goal of DASA_variant is also to maximize system-wide utility. It is worthy of mention 

that in [15], when DASA processes tasks (phases), it first computes collective utility 

densities based on every task and then processes tasks according to the collective utility 

densities associated with them. It never recomputes utility densities later on. By contrast, 

DASA_variant will dynamically recompute collective utility densities based on 

unprocessed tasks, and the utility associated with those processed tasks will not be 

included in later computation of collective utility densities. This is similar to how 

IAUASA computes collective utility.

COMM is developed based on traditional idea, which attempts to optimize 

resource allocation in distributed environments through minimizing communication cost.
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Because this approach is widely adopted in both distributed systems [4] and real-time 

systems [2], the author is interested in whether IAUASA is preferable when compared 

with COMM. COMM works in a similar way to IAUASA except that it seeks to minimize 

system-wide communication cost whenever feasible. Specifically, when it processes a 

task graph, it repeatedly selects the task set that currently contains the highest collective 

communication cost, and tries to find a processor such that this set of tasks can be 

successfully scheduled on it. This process is repeated until all tasks in the graph are 

processed. Like DASA_variant, COMM treats computation and communication 

separately, and aims to meet their timing constraints.

The complexities of DASA_variant and COMM are in the same order as that of 

IAUASA. The simulations are conducted along five dimensions, namely, data volume (or 

load of communication), (workload of) computation, number o f processors, channel 

speed, and system utility.

3.5.1 Simulation Settings

The simulations are classified into two groups. One group consists of 100 tasks. The task 

graph is taken from the STG (Standard Task Graph) lib of [63]. It is generated by 

samepred [63] with random seed 6. The method is described in [64]. The other group 

consists of 88 tasks. The corresponding task graph is also taken from the STG lib of [63]. 

This task graph is built from a real-world robot control application.

The corresponding simulation settings for these groups are listed in Table 3.3 and 

Table 3.4. Settings in Table 3.3 are used for the simulations along computation, data 

volume, number o f processors, and system utility. Settings in Table 3.4 are used for the 

simulations along channel speed.
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Table 3.3 Simulation Settings(l)

___________________Group-1
Number o f tasks: 100

__________ Group-2
Number o f tasks: 88

Task graph: sam epred Task graph: robot control
Channel speed: 1

COMMJDij. uniformly distributed between [200, 300]; 

COMPJDij. uniformly distributed between [200, 300];

COMMjj= (COMMJDij + C O M P J D J
COMPij— (COMM_D,j + C O M PJD ij,
compij. (1) initially generated uniformly from [1, 100];

(Pi)  (2) varies from (Initial Value+0) to (Initial Value+ 100), with step length 10;

commif. (1) initially generated uniformly from [200, 300];
(vy) (2) varies from (Initial Value+0) to (Initial VaW +100),with step length 10;

Uij. (1) initially generated uniformly from [1, 100];
(2) varies from (Initial Value+0) to (Initial Value+100), with step length 10;

Number o f  processors:
(1) initially 10;
(2) varies from 10 to 2;

Table 3.4 Simulation Settings(2)

______________Group-1
Number o f tasks: 100

___________ Group-2
Number o f tasks: 88

Task graph: sam epred Task graph: robot control

Channel speed: varies from 1.0, 1.1, 1.2, .... until 2.0;

COMMJDij. uniformly distributed between [200, 300];

COMP_Dif. uniformly distributed between [200, 300];

COMMjj= (COMMJDjj + C O M P _ D J
COMPij= (COMMJDij + C O M IJ D J

compif. uniformly distributed between [1, 100]; 
(Pd_________________________________________

commif. (100+v), where v is uniformly distributed between [200, 300];
(v»)_________________________________________________

Uif. uniformly distributed between [1, 100];

Number o f processors: 10;

Because DASA_variant allocates resources based on utility functions defined 

under UAM, to facilitate comparison and analysis, it is assumed that if a task in a DAG 

has k outgoing edges, it contains k virtual independent subtasks, which correspond to the 

computations of the k scheduling elements. These virtual subtasks have the same release
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time, processing time and relative deadline. The utility defined (under UAM+) along an

edge is the utility defined (under UAM) for the corresponding subtask, and the utility

inputted to DASA_variant is of the same amount as the utility inputted to IAUASA though

they have different meanings. For example, subtask T0\ (Figure 3.1) is associated with
*

Uo\ (see Table 3.2). To construct the utility function for Tq\, only f/oi, COMP_Dq\ and 

compoi of the corresponding 7-tuple in Table 3.2 are needed. In addition, it is assumed 

that for a given task 7), if there is an edge entering it, the corresponding predecessor (of 

Td will be the predecessor of all its virtual subtasks.

3.5.2 Simulation Results
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Figure 3.5 Utility ratios achieved vary with the increase of data volume.

Figure 3.5 shows that the utility ratios (defined as the ratio between the utility 

obtained and the utility available) achieved by IAUASA, DASA_variant and COMM 

decrease with the increase of data volume. For DASA_variant and COMM, the increasing 

data volume causes more and more communications to miss their deadlines, thus 

resulting in the loss of utility. For IAUASA, the increasing data volume causes more and 

more scheduling elements to be unable to complete in a timely way.
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Figure 3.6 Utility ratios achieved vary with the increase of the workload of computation.
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Figure 3.7 Utility ratios achieved vary with the increase of the number of processors.

Figure 3.6 shows that the utility ratios achieved by the three algorithms also 

decrease with the increase of the workload of computation. For DASA_variant and 

COMM, the increasing workload of computation causes more and more computations to 

be unable to meet their timing constraints (for achieving utility), thus resulting in the loss 

of utility. For IAUASA, the increasing workload of computation causes more and more 

scheduling elements to be unable to complete in a timely way.
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From Figure 3.7(b), it is easy to see that with the increase of the number of 

processors, the utility obtained by three algorithms increases. The reason is 

straightforward: for DASA_variant and COMM, more processors imply that more 

computations can meet their timing constraints, and for IAUASA, more processors allow 

more scheduling elements to be finished in a timely way. In Figure 3.7(a), three 

algorithms exhibit similar behavior: there is almost no utility increment even if the 

number of processors is increased. This is because there are very few parallel 

tasks/scheduling elements in robot control, and hence the parallel resources (i.e., 

processors) can not be fulfilled. Therefore, the utility ratios achieved by three algorithms 

do not increase with the increase in the number of processors.
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Figure 3.8 Utility ratios achieved vary with the increase of channel speed.

From Figure 3.8, it is easy to see that with the increase in channel speed, the 

utility obtained by three algorithms increases. The reason is that for DASA_variant and 

COMM, the increasing channel speed allows more and more communications to finish 

before their deadlines, and for IAUASA, the increasing channel speed makes more and 

more scheduling elements finish in a timely way. Also, as shown in both Figure 3.8(a)
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and Figure 3.8(b), with the increase of channel speed, both IAUASA and DASA_variant 

eventually obtained all available utility while COMM only achieves this in the simulation 

with robot control. The main reasons are as follows. (1) Unlike that in robot control, the 

task graph in samepred contains lots of parallel tasks, which implies more competition on 

resources; thus tasks should be scheduled in an appropriate way so as to achieve the 

maximum utility ratio. (2) COMM conducts resource allocation according to 

communication cost, and at any time, it always tries to allocate resources for the task set 

that currently contains the largest collective communication cost; this heuristic eventually 

causes the unschedulability of some tasks and hence the loss of some utility in samepred.
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Figure 3.9 Utility ratios achieved vary with the increase of system utility.

In Figure 3.9, both Figure 3.9(a) and Figure 3.9(b) indicate that the utility ratios 

achieved by COMM experienced a small increment. The main reason is that with the 

increase of system utility, the ratio of the collective utility of the task sets selected by 

COMM to the whole system utility increased a small amount. In Figure 3.9(b), the utility 

ratio achieved by IAUASA always stabilizes at a high level while that by DASA_variant 

experienced a decrease. The reason is that with the increase of system utility, the amount
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of unachievable utility also increases. Although DASA_variant strived for keeping the 

obtained utility ratio from decreasing by adjusting resource allocation, its ability is 

limited because it can not explore the interplay between computation and communication. 

By contrast, IAUASA is able to explore the interplay between computation and 

communication, and accordingly can adjust the resource allocation so as to keep the 

achieved utility ratio stabilized at a high level. In Figure 3.9(a), even the utility ratio 

obtained by IAUASA experienced a decrease. This is because the task graph of robot 

control is almost a chain with very few parallel tasks/scheduling elements (thus very few 

choices). This eventually limited IAUASA's ability to adjust resource allocation.

Figure 3.5 and Figure 3.9 show that the difference between the utility ratio 

achieved by IAUASA and those by DASA_variant and COMM in robot control is not as 

great as it is in samepred. The main reason is that the task graph in robot control is 

almost a chain, with very few branches. This results in very limited parallel 

tasks/scheduling elements and very few choices, and forces three algorithms to proceed 

nearly along the same path.

Figure 3.5 and Figure 3.9 show that the utility ratios achieved by IAUASA are 

always much higher than those by DASA_variant and COMM. The reason is that while 

DASA_variant and COMM strive for meeting the timing constraints on computation and 

communication separately, IAUASA processes computation and communication as a 

whole, and explores the interplay between them. Consequently, a communication that 

misses its deadline under DASA_variant or COMM may be acceptable under IAUASA if 

the corresponding computation completes early enough. Similarly, a computation that can 

not meet its timing constraint under DASA_variant or COMM may still be acceptable
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under IAUASA if the corresponding communication completes early enough. As a result, 

a communication or computation that results in utility loss under DASA_variant or 

COMM may not necessarily cause utility loss under IAUASA. In Figure 3.8, like IAUASA, 

DASA_variant eventually obtained all system utility. This is due to the high channel 

speed, which enables every communication to finish before its deadline. This is the only 

situation under which DASA_variant may be comparable with IAUASA. For COMM, it 

can not even achieve all system utility under this situation (Figure 3.8(b)). This indicates 

that UAM, which is constructed based on the timeliness of computation or 

communication, is inadequate for capturing the interplay between computation and 

communication from the system level view. This eventually causes resource allocation 

under UAM to be unable to approach the optimal point as close as possible. Likewise, the 

traditional idea to optimize resource allocation by minimizing communication cost is also 

unable to approach the optimal point as close as possible because of its inability to 

explore the interplay between computation and communication.

Figure 3.5 to Figure 3.9 also show an important feature of IAUASA: the more 

choices (implies more parallelism among tasks/scheduling elements), the more IAUASA 

outperforms DASA_variant and COMM. This indicates the advantage of IAUASA in the 

resource allocation in parallel and distributed environments. This result conforms to the 

author’s prediction and clearly demonstrates the motivation of proposing the UAM+ 

model, i.e., in distributed real-time systems, the interplay between computation and 

communication has critical influence on system timeliness. Optimizing resource 

allocation in a distributed real-time environment along one dimension (i.e., computation 

or communication) is thus inadequate for achieving system-wide objective.
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EXPLORING THE INTERPLAY BETWEEN COMPUTATION AND
COMMUNICATION IN DISTRIBUTED REAL-TIME SCHEDULING

In Chapter 3, an extended utility accrual model called UAM+ was proposed and both 

computation and communication are integrated into the model. More importantly, the 

interplay between computation and communication is also captured in the model. Utility 

obtained under UAM+ depends on the completion times of computation and 

communication and the interplay between them. Similar to [42, 43], under UAM+, 

resource is allocated through task/message scheduling, and feasibility analysis is 

conducted through schedulability simulation analysis. Furthermore, resource managers 

under UAM+ are guided to conduct resource allocation by exploring the interplay 

between computation and communication rather than separately processing them. It is 

shown that the UAM+ is very effective for resource allocation in DRTSs [65].

This chapter furthers the study on UAM+ by exploring the online resource 

allocation under UAM+. In this chapter, the author proposes a class of General Utility 

Functions (GUFs) under the UAM+ model to fully capture and characterize the interplay 

between computation and communication in DRTSs. Accordingly, a technique called 

Dynamic Deadline Adjustment (DDA) is proposed to fully explore the interplay and help 

resource managers proceed towards utility accrual. An online algorithm called 1DRSA, 

which integrates DDA technique, is then developed to perform resource scheduling for 

DRTSs. IDRSA adopts a two-level scheduling framework to decompose resource 

scheduling into subprocesses and distribute them to processing nodes so as to reduce the 

cost of resource scheduling through parallel processing. In addition, IDRSA incorporates

60



www.manaraa.com

61

the Testing Interval Tree* (TIT*) (proposed in Chapter 2) to effectively reduce the costs 

of the schedulability tests for tasks and messages.

4.1 System Model

Assume a DRTS, where there are m processing nodes connected by a network. Tasks are 

dispatched to nodes, and messages are transmitted over the network. One of the nodes 

works as a coordinator and the others are subordinates. Every subordinate has a local 

scheduler to process the tasks dispatched to it, and tasks are scheduled according to the 

preemptive Earliest Deadline First (EDF) rule [2]. There is a logical channel (or 

connection) connecting every pair of nodes. For every channel, there is a message 

scheduler to process the messages on it, and messages are scheduled according to non- 

preemptive EDF rule. In addition, it is assumed that there is a control channel connecting 

every pair of nodes. The control channels are dedicated to the transmission of control 

information. By exchanging control information, the coordinator and subordinates 

cooperate to perform resource scheduling. Furthermore, it is assumed that control 

channels provide guaranteed service and the cost of transmitting a control message from 

a source node to a destination node is bounded by a constant Cc.

4.2 Scheduling Element Model

Assume that groups of real-time tasks arrive at the system randomly. For every group of 

tasks, there are precedence relationships among them due to data dependences. Tasks and 

precedence relationships are depicted by Directed Acyclic Graphs (DAGs). In Figure 4.1,
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DAG\ arrives at t\, and DAG, arrives at There is precedence relationship between task 

jTi.o and task 7 / 3  because 7 / 3  needs some data from 7),0 to start its execution.

/ 1  /, time

 T  t  *
D AG 1 D AG ,

Figure 4.1 Task graphs.

A task Ti is denoted by a triple (r„ p„ d,), where r„ and d, are the release time, 

processing time, and relative deadline of T„ respectively. A task is released only after it 

has received all required data from its predecessor(s). Similarly, a message My (sent to 7} 

by Ti) is denoted by a triple (mr,,, comttiij, mdtj), where mry is the time when the data is 

ready, and comniij and md,j are the data volume and relative deadline of My, respectively. 

For a message My, its release time is determined according to mrij=(r,■+//), where r, a n d / 

are the release time and relative finishing time of T„ respectively. For a task T, having k 

predecessors, its release time is determined according to r,=max {(mru+fu) }, where 1 </<&, 

and mru and//, are the release time and relative finishing time of M/„ respectively. If T, 

and T[ are dispatched to the same processor, the communication cost is zero, i.e.,//, =0.

A scheduling element is defined as the combination of the computation (i.e., the 

task) and the communication (i.e., the message) along a directed edge. A 5-tuple is used 

to denote a scheduling element £y (corresponds to T, —*7}): (r/,, COMPJDij, COMMJDy,
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compij, comniij ), where rtJ is the release time of task T, (i.e., rtJ= r,), COMP_Dij and 

COMMJDij are the deadlines of the computation and communication of EtJ, respectively 

(i.e., C O M P_D ij- di and COMM_Pij= mdtj), compij is the computation time of El} (i.e., 

compij= p ^ , and com m tJ is the data volume that needs to be transmitted by £ I;. For £  = 

{£,■,*1, £„*2 , •••, £,-,**} (i.e., £, is the set of scheduling elements that originate from the 

same task £, in a DAG), all scheduling elements in £, have identical release times, 

computation times, and deadlines of computations (because their computations are the 

same, i.e., task £,). but they may have different data volume and deadlines of 

communications. In addition, all scheduling elements will have identical completion 

times of computations, which are determined by the completion of task 7).

4.3 Utility Function

Because the interplay between computation and communication is the key factor in 

determining the timeliness of activities in DRTSs, resource scheduling must be interplay- 

aware. In this chapter, the author proposes a class of General Utility Functions (GUFs) 

under UAM+ to capture and characterize the interplay. These GUFs will provide 

guidelines for optimizing resource allocation by exploring the interplay between 

computation and communication.

The utility function of a scheduling element £y is depicted in Figure 4.2. COMPij 

and COMMij are the timing constraints on computation and communication for achieving 

positive utility. Note that COM Pti is different from COM P_DlJ in that the latter marks the 

deadline of the computation of £y while the former marks the latest time point by which 

the computation of £,• should finish so as to achieve utility. COMPij may be less or



www.manaraa.com

64

greater than COMP_Dij• Similarly, CO M M tJ is different from COMM_Dij. As shown in 

Figure 4.2, if the completion times of computation and communication are bounded 

within the shaded region, uniform utility Uy can be achieved; otherwise, no utility can be 

obtained. To be more specific, there are four cases contained in this figure.

f j  (comp, comm ): Aijx.comp+Btj'x.comm=Cij

comp

COMPu

commcomp i

comm-i comn\\

utility

comp  axis: completion time of computation; 
comm  axis: completion time of communication;

Figure 4.2 Utility function of scheduling element 2%.

Case 1: if the communication completes no later than com m i, Uij units of utility 

can be achieved if only the computation finishes no later than COMPij.

Case 2: if the computation completes no later than compz, Uij units of utility can 

be achieved if only the communication finishes no later than COMM,y.

Case 3: If the computation completes after com p2 (say com p\) and the 

communication completes after commz (say com m \), comp\ and comm\ must meet the 

constraint defined by fjj(comp, comm), i.e., A ,,x comp\ +B,jx com m j < C;J, so as to make 

contribution to the system.
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Case 4: The completion times of computation and communication are not 

bounded within the shaded region, and no utility can be obtained.

The existence of ffco m p , comm) sets a constraint on the combined completion 

times of computation and communication, and it is used to characterize the interplay 

between computation and communication. On one hand, the interplay between 

computation and communication reflects the fact that computation and communication 

function together to determine the timeliness of activities in DRTSs, and the completion 

of one side may force some constraint(s) on that of the other side; on the other hand, the 

interplay provides a space for exploring more flexible solutions, which makes it possible 

to adjust resource allocation for computation and communication as a whole based on the 

loads of computation and communication and currently available resources for 

computation and communication, rather than seeking to meet the constraints on 

computation and communication separately. This is of critical importance for DRTSs, 

where due to the interplay between computation and communication, resource scheduling 

must be interplay-aware and resource optimization should be performed by exploring a 

two-dimensional space, i.e., computation and communication.

Combined with utility function, the previous definition of Etj can be extended to 

{rij, COMP_Dij, COMMJDij, comptj, com m tj, COMPij, COMMy, U ij,fj{com p, com m ) ).

Given a task graph containing n tasks 7j, ..., Tn, and for every scheduling element 

Ey, its utility function is defined as Figure 4.2, the optimization goal of resource 

scheduling is to maximize system utility. This can be formally expressed as follows.

Find a mapping M: Set o f  tasks —► Set o f processors s.t.

Utility = max{ £  £  (U y x X v )}
i=i  j= \
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where,

X,j = <

f  1 i f  { (cp„ < C O M P ,t ) A  (cm „ < COMM  „) 

MAxcp,, + By x c m < c v)

A( f / ,  >0 ) } ;

 ̂ 0  otherwise;

cpif the completion time of the computation of Ey\  
cmij: the completion time of the communication of Eif,

Because the derivation and the construction of the utility functions are 

application-specific and are subject to a system-wide engineering process [43], the author 

will not dwell into this topic in this dissertation.

4.4 Dynamic Deadline Adjustment

Dynamic Deadline Adjustment (DDA) under UAM+ is critical in the sense that resource 

scheduling in a DRTS must take the interplay between computation and communication 

into account, and computation and communication separately meeting their timing 

constraints is inadequate for system utility accrual. In Figure 4.2, suppose the 

computation of E y  completes at time compi, and the communication of E y  completes at 

some time after comm\ but before C O M M y .  It is easy to see that both computation and 

communication meet their timing constraints, but the obtained utility is zero. The reason 

is due to the interplay between computation and communication, neither the computation 

nor the communication can individually determine the timeliness of a scheduling 

element. Thus, to determine the final deadlines of computation and communication, the 

interplay between them needs to be taken into account. When the computation and 

communication of E y  are dispatched to a processor and a channel, simply assigning 

C O M P J D y  and C O M M _ D  y to their deadlines is inadequate for utility accrual. Their
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deadlines should be adjusted in a way towards utility accrual. The DDA technique 

observes the following two rules.

Rule 1: DDA should be performed towards utility accrual.
Rule 2: The deadline adjustment o f a task/message should not adversely influence those 

existing tasks/messages on a node/channel. This rule should be observed; 
otherwise the adjustment will invalidate previous process on tasks/messages.

Consider a scheduling element E y -  (ry, COM PJDy, CO M M JDy, compy, commy, 

COMPij, COMMij, Uij, fij(comp, com m ) ). If it could be successfully scheduled, there 

exists at least one scheme s satisfying the following conditions (I), (II), and (III). (In the 

following, resp_com p'j is the response time of the computation of Ey,  and resp _ comm^ 

is the response time of the communication of E y.)

{resp _ compij < COMPlj) a  (resp _ comm* < C O M M tj) (I)

(A,y x resp _ compij + By x resP -  commlj) < Cy (II)

No scheduling elements processed before are adversely influenced (III)

In this case, the deadlines of the computation and communication of Ey are 

adjusted according to (A l) and (A2) (see below), and they are then dispatched to 

corresponding processor and channel. The rationales behind this idea are as follows.

(1) Intuitively, a larger adjustment slot A y  implies that processor and that channel 

as a whole are the least loaded. It is desirable to distribute some load to them from a 

balance point of view.
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(2) There will be a larger space for adjusting the deadlines of the computation and 

communication of Ey,  which makes it possible to leave more capacity to those elements 

that will be processed after E y  so as to obtain as much utility as possible.

deadline _ o f  _ computation = (resp _ comp* + A )

deadline _ o f  _ communication = (resp _ comm* + A* )

A = maxlAV} (1< s < (m-1), and suppose there are (m-1) schemes)

(C0 -  Ay x resp _ compSy -  By x resp _ comm*)

^  U y + B y )

In the case that only condition (III) is unsatisfiable due to the communication of 

E y, Ti and 7} should be dispatched to the same processor if feasible. In all other cases, Ey  

will be put aside until the second time it is selected, and its utility is set to zero.

When E y  is processed the second time, the deadlines of its computation and 

communication are adjusted according to the following cases.

Case 1: Condition (III) is unsatisfiable. In this case, the deadline of its

computation and the release time and deadline of its communication are first adjusted 

according to (A3)-(A5) (see below), and the final deadlines of its computation and 

communication are then determined according to (A6) and (A7) (see below).

In the following, d scnmp (l<s<(m-l)) is the deadline of the computation of the last 

element adversely influenced by Ey, and misss is the missed time interval of the

computation of that element. rcsonm and d scomm are the release time and deadline of the

(Al)

(A2)
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communication of the last element adversely influenced by E,y, and d scomJ  is obtained by 

applying a small adjustment to d 'nmtm . speed5 is the channel speed.

deadline_ of_ computation w = d scomp + miss: 
(if computation causes problem)

comp (A3)

release_ time_ of_ communication ' = r*B 
(if communication causes problem)

comm (A4)

deadline o f communication s, = max{ d s
—  O  —  v c t .

+ comm - (A5)comm speed 3
(if communication causes problem)

Case 2: All other cases. The deadlines of its computation and communication are 

adjusted according to (A6) and (A7) (see below). The rationales behind this idea are as 

follows.

(1) Because all currently ready scheduling elements have zero utility, assigning 

smaller deadlines to one element will not cause utility loss of the other elements.

(2) This will help to minimize the response times of those scheduling elements 

that violate conditions (I), (II) and (III).

In all other cases the deadline of computation and that of communication are 

adjusted according to (A6) and (A7).

deadline_ of_ computation = resp _ comp* (A6)

deadline_ of_ communication = resp _ coming (A7)

resp_ compij + resp_ comm* = min{(resp_ comp'j + resp_ comm*)} ( l<s<(m-1))
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4.5 Interplay-aware Distributed Resource Scheduling Algorithm

This section discusses a distributed resource scheduling algorithm, which integrates the 

DDA technique to explore the interplay between computation and communication. 

Because resource scheduling in DRTSs is inherently complicated, this algorithm adopts 

some effective approaches to reduce its complexity. These approaches include the two- 

level scheduling framework and the Testing Interval Tree* (TIT*). The two-level 

scheduling framework is adopted to decompose resource scheduling into subprocesses 

and perform resource allocation in parallel manner. The TIT* tree is adopted to reduce 

the cost of the schedulability tests contained in the algorithm. Because TIT* tree is 

discussed in Chapter 2, the description of it will not be repeated in this chapter. Before 

discussing the algorithm in detail, we first describe two-level scheduling framework.

4.5.1 Two-level Scheduling Framework

Under two-level scheduling framework, a distributed system contains a coordinator (or 

global manager) and some subordinates (or local managers). Although subordinates may 

apply some node-specific policies to local resource management, the global manager 

coordinates their actions and performs resource management from a system point of 

view.

Node (m-1) 
Subordinate 

(Local Manager)

Node 2 
Subordinate 

(Local Manager)

Coordinator

Node 1 
Subordinate 

(Local Manager)

Figure 4.3 Two-level scheduling framework.
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Whenever a group of tasks arrive, the coordinator and subordinates work together 

to perform resource allocation for them. To be more specific, the coordinator will pick 

the scheduling elements one by one, dispatch them to subordinates to perform 

schedulability tests for computation and communication, collect and analyze the results 

obtained from subordinates, optimize resource allocation, and distribute elements to 

appropriate nodes and channels. Accordingly, subordinates will perform schedulability 

tests for computation and communication in parallel, return test results to the coordinator, 

and accommodate specified scheduling elements.

This two-level scheduling framework provides an effective approach for reducing 

the complexity of distributed real-time scheduling system. Resource scheduling under 

this framework is decomposed into subprocesses, which are distributed to and processed 

in parallel by subordinates. Hence, the complexity of resource scheduling is reduced 

through parallelism.

The roles of coordinator and subordinate are dynamically reconfigurable. For 

example, to avoid single point failure of the coordinator and improve the fault-tolerance 

of the two-level scheduling framework, every node is capable of working as coordinator 

when necessary; in case of the failure of current coordinator, an active node is selected as 

the new coordinator. Current coordinator and a subordinate may also switch roles when 

necessary.

4.5.2 The Algorithm

Before proceeding to the details of the algorithm, we assume that every subordinate 

maintains a task TIT* tree containing all unfinished tasks on it, and for every
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communication channel connecting it and another subordinate, it also maintains a 

message TIT* tree containing all unfinished messages on that channel.

In Figure 4.4, the whole algorithm consists of two parts, i.e., GM and LM. GM 

resides on the coordinator, and LM  resides on every subordinate. In Figure 4.4 (a), the 

coordinator processes scheduling elements according to their utility, and always picks a 

ready element (all of its predecessors have been processed) currently having the largest 

utility. By this way, the coordinator attempts to maximize system-wide utility. Once a 

suitable element, say exy, is identified, the coordinator dispatches it to subordinates to 

perform schedulability tests for the computation and communication of it. In Figure 4.4 

(b), if the currently processed element has no predecessor, every subordinate needs to 

perform tests for both computation and communication; otherwise, one subordinate needs 

to perform the test for computation and the other subordinates only need to perform the 

test for communication because elements are processed according to their precedence 

relationships. For example, once the node and channel for an element e^  are determined, 

the node for another element eyz is accordingly predetermined. Thus, a test for the 

computation of eyz on other nodes is unnecessary. In Figure 4.4 (a) and Figure 4.4 (c), 

once a suitable node and a suitable channel are determined, the computation and 

communication of exy are dispatched to them, and the corresponding TIT* trees are 

updated.

In Figure 4.4 (a), ChooseElementQ is used to find a ready scheduling element 

currently having the largest utility. DispatchForTest (exv) is used to dispatch exs to 

subordinates to perform schedulability tests. CollectFeedback () is used to collect test 

results from subordinates. AnalyzeOptimizeQ is used to analyze the results and optimize
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resource allocation from a system’s point of view. DDA technique is integrated into this 

part. If the completion times of computation and communication are bounded within the 

valid region (the shaded region, Figure 4.2) defined by the corresponding utility function, 

and the joining of current element has no adverse influence on other elements processed 

so far, the scheme with the maximal adjustment slot (see Section 4.4) is chosen; 

otherwise, the utility of e^  is set to zero, and it is put aside until the second time it is 

selected. After a global analysis, the coordinator will decide which node and which 

channel the computation and communication of should be dispatched to. 

DispatchForExecutionQ is used to send out the final decision.

In Figure 4.4 (b), the normal case (i.e., the element under test has predecessor(s)), 

if this subordinate is specified for performing the test for computation, it first invokes 

ScheduabilityTestCompQ, and then invokes ReplyFeedbackCompQ to send out the test 

result to coordinator and other nodes; otherwise, it first calls CollectFeedbackCompQ to 

obtain the test result of computation, and then invokes ScheduabilityTestCommQ to 

perform the test for communication (on the channel connecting this node and the node 

specified for performing the test for computation). ReplyFeedbackComm() is used to send 

the test result to coordinator. The test result simply contains the information about 

whether the computation/communication is schedulable on that node/channel, what is the 

response time and whether other tasks/messages are adversely influenced or not, and 

other information. In the special case (i.e., the element under test has no predecessor), 

every subordinate needs to perform the test for computation and the test for 

communication on every channel connecting this node and another node. 

ReplyFeedbackO is then invoked to send out the test result.
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G M  (D AG k)

R e p e a t
1 e„  = C h o o s e  E le m e n t  (DAGk );
2  D is p a t c h F o r T e s t  ( e xy);
3 C o l le c tF e e d b a c k  ();
4  A n a ly z e O p tim z e  ();
5 D i s p a tc h F o r E x e c u t io n  ( e xy);

U n t i l  all scheduling elements are processed ;

(a)

L M  ( P a r t - I )

/♦on receiving a Schedulability Test M essage (STM)*/

N o r m a lP r o c e s s :
C a s e  1 : /♦this node IS the specified node in STM*/

S N 1.1 S c h e d u la b i l i ty T e s tC o m p  (); /♦schedulability test for computation*/
SN1.2 R e p ly F e e d b a c k C o m p  (); /♦send out test result*/

C a s e  2 : /♦this node is NOT the specified node in STM*/
SN2.1 C o l le c tF e e d b a c k C o m p  (); /♦collect test result o f computation*/
SN2.2 S c h e d u la b i l i ty  T e s t  C o m m  (); /♦schedulability test for communication*/
SN2.3 R e p ly F e e d b a c k C o m m  (); /♦send out test result*/

S D e c ia lP ro c e s s :
SS1.1 S c h e d u la b i l i ty T e s tC o m p  (); /♦schedulability test for computation*/
S S I.2 F o r p = l  t o m-2 d o
S S 1.3 S c h e d u la b i l i ty T e s tC o m m  () /♦schedulability test for communication*/
SSI.4 R e p ly F e e d b a c k  (); /♦send out test result*/

(b)

L M  ( P a r t - n )

/*on receiving an Execution Message (EM)*!

N o r m a lP r o c e s s :
C a s e  1:

E N 1.1 I n s e r t T a s k  ();
EN1.2 I n s e r t  C o m m  ();

C a s e  2 :

E N 2.1 I n s e r tC o m m  ();

S p e c ia lP r o c e s s ;
C a s e  1:

ES1.1 I n s e r t T a s k  ();
E S1.2 I n s e r tC o m m  ();

C a s e  2 :

E S 2 .1 I n s e r tC o m m  ();

/♦this node is specified for accommodating the task*/
/♦update task TIT* tree*/
/♦update message TIT* tree*/
/♦this node is specified for updating its message TIT* tree (of the channel connecting it 

and the node accommodating the task)*/
/♦update message TIT* tree*/

/♦this node is specified for accommodating the task*/
/♦update task TIT* tree*/
/♦update message TIT* tree*/
/* this node is specified for updating its message TIT* tree (of the channel connecting it 

and the node accommodating the task)*/
/♦update message TIT* tree*/

/*e„  is the scheduling element currently having the largest utility*/ 
/♦schedulability test message is broadcasted to all subordinates*/ 
/♦collect test results from subordinates*/
/♦analyze the results and choose the best scheme*/
/♦send out the final decision*/

(C)

Figure 4.4 Interplay-aware distributed resource scheduling algorithm.
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In Figure 4.4 (c), the normal case, if this subordinate is specified for 

accommodating the computation of exy, it invokes InsertTaskQ and InsertCommQ to add 

the computation and communication of exy to its task and message TIT* trees; otherwise, 

if this subordinate is specified for updating its message TIT* tree, it invokes 

InsertCommQ to add the communication of to its message TIT* tree. In the special 

case, similar actions are taken by specified subordinates.

LM. LM,
STMSTM STMSTM

STM

RComp RComp
RComp

RComp
RComp

RCommRComm RComm

RComm

RComm

EM EM

GM LM,LM,

Phase 2

Phase 4

Phase 3

Phase 1

LM: Local Manager; GM: Global Manager; STM: Schedulability Test Message; EM: Execution Message. 
LM,: The local manager specified for performing the schedulability test for computation.
LMj.: The local manager specified for updating its message TIT* tree.
RComp: Test result o f computation; RComm: Test result o f communication;

Figure 4.5 Simplified message sequence chart for the normal case.

To help understand the algorithm, a simplified Message Sequence Chart (MSC) 

(Figure 4.5) is used to demonstrate the interactions among managers. Figure 4.5 is for the 

normal case. The MSC for the special case is similar to Figure 4.5 except that it contains 

phases 1, 2, and 4, and in phase 2 every subordinate sends a control message containing 

the test results of computation and communication to the coordinator.
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4.5.2 Complexity Analysis

Because IDRSA is an online algorithm, it needs to consider the newly arrived DAG as 

well as those DAGs that have already been processed by IDRSA but have not finished 

(some tasks/messages of these DAGs have not completed, and they are still in the 

system). Suppose that DAG,, which contains N  tasks and E  edges, arrives at the system at 

time t, and currently the maximum number of tasks on a node is bounded by N, and the 

maximum number of messages on a channel is bounded by Ne, the cost of processing 

DAG, by the algorithm and its subroutines is computed in Table 4.1.

Subroutine ChooseElementQ is used to find the scheduling element currently 

having the largest utility. This can be done in O(logE) time because the number of 

currently ready elements is at most E.

Subroutines DispatchForTestQ, DispatchForExecutionQ, ReplyFeedbackCompQ, 

ReplyFeedbackCommQ, and Reply Feedback^) are used to deliver control information. 

Hence the cost of each of them is in 0(Cc) time.

Subroutine SchedulabilityTestComp() is used to perform the schedulability test for 

computation. Its cost is in 0(log2(N,+N)) because there are at most (N,+N) tasks on a task 

TIT* tree, and the test will take 0(log2(N,+N)) time.

Subroutine SchedulabilityTestCommQ is used to perform the schedulability test 

for communication. Its cost is in 0(log (Ne+E)) because there are at most (Ne+E) 

messages on a message TIT* tree, and the test will take 0(\og2(Ne+E)) time.

Subroutine CollectFeedbackCompi) is used to collect the test result of 

computation. Its cost depends on how fast the specified subordinate can finish the test.
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Because the cost of SchedulabilityTestCompQ is in 0(\og2(N,+N)), the cost of 

CollectFeedbackCompO is in 0(\og2(Nt+N)+Cc).

Table 4.1 Complexity Analysis

Subroutine/Algorithm Cost
DispatchForTest( ) 
DispatchForExecution( ) 
ReplyFeedbackComp( ) 
ReplyFeedbackComm( ) 
ReplyFeedback( )

0(Cc)

ChooseElement( ) 0(\ogE)
CollectFeedback( ) 0 (lo g \N t+N)+mxlog\Ne+E))
AnalyzeOptimize( ) O(logm)
SchedulabilityTestCompi) Odog'M+AO)
SchedulabilityTestComm( ) 0(\og2(Ne+E))
CollectFeedbackComp( ) 0 (lo g \N ,+ m
InsertTask( ) 0(log(A,+AO)
InsertComm( ) 0(log(Ne+E))
Algorithm IDRSA 0(E(]og2(Nt+K)+mxlog2(Ne+E)))

Subroutine CollectFeedbackQ is used to collect test results. Its cost depends on 

how fast LMs can finish tests. Because the costs of SchedulabilityTestComp(), 

SchedulabilityTestCommQ, CollectFeedbackCompO, Reply FeedbackCompO,

ReplyFeedbackCommQ, and ReplyFeedbackQ are in 0(log2(JV,+AO), OQog2(Ne+E)), 

0(log2(Nt+N) +Cc), 0(Cc), 0(Cc), and O(Cc), respectively, the cost of
'y  ■y

CollectFeedbackO is in 0(log (Nt+N)+mx\og (Ne+E)). (Note that in the special case, 

every subordinate needs to perform the test for communication on (m-2) channels 

connecting it to the other (m-2) nodes.)

It is easy to see that the costs of lnsertTask() and InsertComm() are in 0(log 

(Nt+N)) and 0(log (Ne+E)), respectively.
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Subroutine AnalyzeOptimize() is used to find the best scheme among all available 

schemes. Its cost is in O(logm) because there are at most (m- \ ) schemes received by the 

coordinator. (Note that in the special case, although every node needs to perform the test 

for communication on (m-2) channels, it only needs to choose and send out the best 

result.)

The complexity of IDRSA is in 0(E(\og2(N,+N)+mxlog2(Ne+E))) because the cost 

of CollectFeedbackQ is in 0(\og2(N,+N)+mx\og2(Nf,+E)), which dominates the cost of 

IDRSA, and the Repeat-Until loop in GM will be executed at most 2E  times.

4.6 Simulation Analysis

The simulations are designed to test how well IDRSA performs in the presence of 

overload of computation, overload of communication, or both, and tight interplay 

between computation and communication. Accordingly, the simulations are performed 

along five dimensions, i.e., (load of) computation, (load of) communication or data 

volume, (channel) speed, number o f processors, and interplay factor. To evaluate the 

performance of IDRSA, another scheduling algorithm called DASA_variant (discussed in 

Chapter 3) is also included in these simulations. DASA_variant is a variant of DASA [15]. 

DASA is constructed under UAM and has been widely applied to the resource scheduling 

in distributed real-time systems [9, 10, 11, 12, 13, 14], Like DASA, DASA_variant is 

constructed based on UAM. DASA_variant seeks to maximize system-wide utility by 

greedily picking and allocating resources for the task set currently having the highest 

collective utility density (defined as the ratio of the total utility of the tasks in the task set 

to the total processing time of them); this procedure repeats until all tasks are processed.



www.manaraa.com

79

When performing resource scheduling, DASA_variant processes computation and 

communication separately. For computation, DASA_variant tries to meet its timing 

constraint for achieving utility, and for communication, DASA_variant tries to meet its 

deadline. It is worthy of mention that the complexity of DASA_variant is much higher 

than that of IDRSA.

4.6.1 Simulation Settings

The simulations are classified into two groups. One group consists of 100 tasks. The task 

graph is taken from the Standard Task Graph (STG) lib of [63], and it is generated by 

samepred [63] with random seed 6 according to the method described in [64]. The other 

group consists of 88 tasks. The corresponding task graph is also taken from the STG lib 

of [63] and it is built from a robot control application. Each group contains a series of 

simulations along the dimensions mentioned before.

To facilitate the performance analysis of the two algorithms in the presence of the 

interplay between computation and communication, the interplay factor a  (l<a<oo) is 

introduced; a is used to denote how tightly computation and communication are 

constrained together, the larger the a, the tighter the constraint on the combined 

completion times of computation and communication. As shown in Table 4.2, Table 4.3, 

and Table 4.4, for those simulations along computation, data volume, speed, and number 

o f processors, a is set to 5/4 if condition (II) (see below) is satisfied; otherwise, a is set to 

a value such that condition (II) is satisfiable. This actually sets a loose constraint on the 

combined completion times of computation and communication. Thus the interplay 

between computation and communication will play a very limited role in these 

simulations. By contrast, for those simulations along interplay factor, much tighter
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constraints are set by condition (12) (see below). This implies that the interplay will play 

an important role in these simulations.

(Max {COMPij, COMMij} +A,)<( l/a)x(COMPij+COMMij)< 1 x(COMPij+COMMij) (11) 

(where A/ is an adjustment factor) 

c o m Pij<( \la)x{COMPij+COMMij)< IxiCOMP^+COMM^ (12)

Table 4.2 Simulation Settings(l)

________________________ Group-1
Number o f tasks: 100

____________ Group-2
Number o f tasks: 88

Task graph: sam epred Task graph: robot control

Channel speed: 1.0;
COMMjj= COMM_Dij: uniformly distributed between [200, 300];

COMPij- COMP_Djf. uniformly distributed between [200, 300];
compif. (1) initially generated uniformly between [1, 100];

(2) varies from (Initial Value+0) to (Initial Value+100), with step length 10;
commif. (1) initially generated uniformly between [200, 300];

(2) varies from (Initial Value+0) to (Initial Value+100), with step length 10;

U^. uniformly distributed between [1, 100];
Number o f processors:

(1) initially 10;
(2) varies from 10 to 2;

Interplay factor:
(1 ) A 0= B U
(2) (Qj/Ay)= (1 /a )x(COMPjj + COMM,)
(3) a  is set to 5/4 if

(Max{COMPij,COMMij)+&l)<\la.)Y.{COMPlf+COMMij) < \A C O M P , + COMMij)-, 
(where A; is an adjustment factor and A/ > 0 ) 

otherwise, a  is set to a value such that the above condition is satisfied;
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Table 4.3 Simulation Settings(2)

___________________ Group-1
Number o f tasks: 100

_______________Group-2
Number o f tasks: 88

Task graph: sam epred Task graph: robot control

Channel speed: varies from 1.0, 1.1, 1.2, .. . ,  until 2.0;

COMM,j= COMM_Djj: uniformly distributed between [200, 300];

COMPij= COM P_D if. uniformly distributed between [200, 300];

c o m p f  uniformly distributed between [1, 100];
comnijj. (100+v), where v is uniformly distributed between [200, 300];

Uij. uniformly distributed between [1, 100];

Number o f processors: 10;
Interplay factor:
(1
(2) (QM y)= ( l/a)x(COM PtJ + COMMi})
(3 ) a  is  set to 5 /4  if

(Max[ COMPipCOMM,j}+A,)<( l/a )x (C O M P y+C (9M A /y) <  lx (C O M P u + COMMtJ)\ 
(w here A/ is an adjustm ent factor and A/ > 0 )

O therw ise, a  is set to a value such that the above condition  is satisfied;

Table 4.4 Simulation Settings(3)

_________________ Group-1
Number o f  tasks: 100

__________________ Group-2
Number of tasks: 88

Task graph: sam epred Task graph: robot control

Channel speed: 1.0;

COMMij= C O M M JD f uniformly distributed between [200, 300];

COM Ptj= COMPJDif. uniformly distributed between [200, 300];

com pif uniformly distributed between [1, 100];

conmijj: (100+v), where v is uniformly distributed between [200, 300];

Uu: uniformly distributed between [1, 100];
Number o f  processors: 10;
Interplay factor:

(1 ) A i]= B ij
(2 ) (Q /A y )=  (1 /a M C O M P ij  + C O M M .j)

(1/a varies from 0.1 to 0.9, with step length 0.1.)
(3) 0.1 < (1/a) < 0.9 and com P ij< ( l/a )x (C O A f/J,;+COA/M ,;)<  1 x(C O M P „ + C O M M ,,)

Because DASA_variant allocates resources based on utility functions defined 

under UAM, to facilitate comparison and analysis, it is assumed that if a task in a DAG 

has k outgoing edges, it contains k virtual independent subtasks. The utility defined under
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UAM+ along an edge is the utility defined under UAM for the corresponding subtask, and 

the utility input to DASA_variant is of the same amount as the utility input to IDRSA 

though they have different meanings. In addition, it is assumed that for a given task 7/, if 

there is an edge entering it, the corresponding predecessor (of Tt)  will be the predecessor 

of all its virtual subtasks.

4.6.2 Simulation Results

D A SA  v a ria n t
IDRSA
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Figure 4.6 Utility ratios achieved vary with the increase of computation workload.
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Figure 4.7 Utility ratios achieved vary with the increase of data volume.
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As shown in Figure 4.6, the utility ratios (defined as the utility obtained versus the 

utility available) obtained by the two algorithms decrease with the increase of 

computation workload. For DASA_variant, the increasing computation workload makes 

more and more computations unable to complete within their constraints, and for IDRSA, 

the increasing computation workload makes more and more scheduling elements unable 

to complete in a timely way.
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Figure 4.8 Utility ratios achieved vary with the decrease of the number of processors.
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Figure 4.9 Utility ratios achieved vary with the increase of channel speed.
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Figure 4.10 Utility ratios achieved vary with the increase of interplay factor a.

Figure 4.7(b) shows that the utility ratio obtained by IDRSA experienced a small 

decrease with the increase of data volume. This is because the increasing data volume (or 

load of communication) eventually makes some elements unable to complete in a timely 

way. Although IDRSA is interplay-aware and able to adjust resource allocation according 

to the loads of computation and communication, its ability to adjust is not unlimited. For 

example, to alleviate the problem of the increasing data volume, IDRSA may dispatch a 

pair of communicating tasks to the same processor, but the power of this approach is 

limited due to the fact that if too many computations are dispatched to one processor. 

This will eventually lead to overload of computation on this processor. As a result, some 

scheduling elements can not finish in time, and the corresponding utility is lost. For 

DASA_variant, it experienced an even smaller decrease of utility ratio. The reason is that 

its unawareness of the interplay between computation and communication results in low 

utility ratio before the increase of data volume, which implies that some utility has 

already been lost due to its unawareness of the interplay; hence the increasing data 

volume has very little impact on the utility it obtained. From Figure 4.7 (a), it is easy to
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see that DASA_variant exhibits good performance though it is unaware of the interplay 

between computation and communication. This is because the DAG of robot control is 

almost a chain, with very few parallel tasks, and DASA_variant dispatched almost all 

computations to one processor. Obviously, in this case the increasing data volume has 

very little impact on the utility it obtained.

Figure 4.8(b) indicates that the utility ratios obtained by the two algorithms 

decrease with the decreasing number of processors. For DASA_variant, fewer processors 

will make fewer computations complete within their timing constraints, and for IDRSA, 

fewer processors make fewer scheduling elements processed in a timely way. In Figure 

4.8 (a), the utility ratios obtained by the two algorithms almost do not vary with the 

decreasing number of processors, and even DASA_variant exhibits good performance. 

The reason is similar to what is mentioned before, i.e., the DAG of robot control is 

almost a chain, which implies that one can dispatch almost all computations to one 

processor (hence some processors are unoccupied). Obviously, removing those 

unoccupied processors results in no utility loss.

Figure 4.9 shows that the utility ratios achieved by the two algorithms increase 

with the increasing channel speed. For DASA_variant, the increasing speed makes more 

and more communications able to complete before their deadlines, and for IDRSA, the 

increasing speed makes more and more scheduling elements processed in a timely way.

Figure 4.10 shows that the utility ratio obtained by DASA_variant drops a lot with 

the increase of interplay factor, while that by IDRSA maintains at a high level though a 

small decrease is also seen. The reason is that the interplay between computation and 

communication becomes tighter and tighter with the increasing interplay factor, and
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DASA_variant loses more and more utility due to its unawareness of the interplay. By 

contrast, IDRSA fully realizes the interplay, and is able to adjust the allocation of 

processors and channels according to the interplay and the loads of computations and 

communications.

In Figure 4.6 and Figure 4.8 (b), compared to its counterpart, IDRSA performs 

very well when the load of computation is heavy or the processing capacity for 

computation is low. This is because IDRSA is an interplay-aware algorithm, and is able to 

adjust the allocation of processors and channels according to the loads of computations 

and the processing capacity for computations so as to meet the constraints on the 

combined completion times of computations and communications. These results suggest 

the excellence of IDRSA in the presence of heavy computation load or low processing 

capacity for computation.

From Figure 4.6 to Figure 4.10, it is easy to see that IDRSA performs much better 

than DASA_variant. The reason is that DASA_variant is constructed based on traditional 

UAM, and its unawareness of the interplay between computation and communication in a 

DRTS leads to the loss of a large amount of utility. IDRSA, however, fully realizes the 

interplay, and is able to flexibly adjust the allocation of processors and channels 

according to the interplay, the loads of computations and communications, and the 

available processing capacity for computations and communications. This indicates that 

due to the interplay between computation and communication in a DRTS, separately 

meeting the timing constraints on computation and communication is inadequate for 

utility accrual from a system’s point of view.
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CHAPTER 5

CALCULUS CURVE BASED ONLINE REAL-TIME DYNAMIC VOLOTAGE-
FREQUENCY SCALING

Power/energy consumption is a critical issue in the system design of the battery-powered 

devices such as mobile, portable and embedded devices, as well as the desktop and server 

systems (because high power consumption produces high heat, which causes high 

temperature and eventually reduces system performance and reliability).

Over the past few years, the Dynamic Voltage-frequency Scaling (DVS) 

technique has been applied to many systems to reduce energy consumption by reducing 

the supply voltage and operating frequency at run time. The DVS technique is based on 

the fact that the energy dissipated per cycle with CMOS circuitry scales quadratically to 

the supply voltage {E °c V 2 ), and over the range of allowed voltages the highest 

frequency at which the processor will run correctly drops approximately proportional to 

the voltage ( f ^ V ) .  (Hence the energy dissipated per cycle also scales quadratically to 

the frequency (E /  ).)

DVS has been proven to be a powerful technique for reducing energy 

consumption, and thus has been extensively studied not only in general-purpose 

computing systems [61, 66, 67, 68, 69] (and the references therein) but also in real-time 

systems, where the DVS technique is extended to reduce energy consumption while 

meeting timing constraints. In this aspect, extensive work has been done under the 

periodic task model (where every task is associated with a period and the task is invoked 

periodically) [60, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83], or the sporadic 

task model (where every task is associated with a minimum interarrival time and the

87
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interval between two consecutive invocations of a task is at least of that length) [84], In 

addition, some work also studied the real-time DVS techniques under a more general task 

model, where tasks have arbitrary arrival times and arbitrary deadlines [62, 75, 85, 86]. In 

[62, 86], DVS algorithms are proposed to reduce the energy consumption of a set of tasks 

with arbitrary arrival times and arbitrary deadlines; but the proposed algorithms are 

static/offline. In [75], an online DVS algorithm called OLDVS is proposed; but the 

algorithm is mainly based on Worst Case Execution Time (WCET) analysis, and the 

basic idea behind the algorithm is to exploit the unfilled WCET slices. Energy saving 

with this approach is limited. Consider a simple scenario where there is only one task 

T=(r, e, d) (where r, e and d  are the release time, the WCET and the relative deadline of 

task T, respectively), and d > e. According to [75], T  will be executed under full speed 

even if a slower speed is fast enough for T  to complete no later than its deadline. In [85], 

an online algorithm called AVR is proposed; nevertheless, this algorithm relies on an 

assumption, i.e., the computed speed is always available, no matter how high it is. This 

assumption is impractical in real world because the highest speed of a specific processor 

is limited. Besides, the approaches proposed in [75] and [85] can only be applied to those 

real-time systems where tasks/jobs are scheduled according to Earliest Deadline First 

(EDF) rule [2],

In this dissertation, the author advances the research on online real-time DVS by 

applying new method and theory, i.e., Network Calculus curve [87], to hard real-time 

systems under a general task model, where events/tasks may arrive randomly, and no 

assumptions are made about their periodicity, minimum inter-arrival time and so on. This 

work is motivated by the following observations.
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(1) Network calculus curves will make it possible to establish a more general task 

model, which can capture the characteristics of a wide spectrum of tasks, including burst 

arriving tasks and the traditional periodic and sporadic tasks, and characterize them in a 

general way. This will make it possible to study real-time DVS under a more general task 

model and investigate some general real-time DVS techniques and algorithms.

(2) While static/offline real-time DVS can be performed with all necessary 

information in hand, dynamic/online real-time DVS has to be conducted with very 

limited information, which makes online real-time DVS hard to tackle. The network 

calculus curves inherently have the ability to accommodate random/dynamic system 

features. This will make it possible to investigate online real-time DVS through an 

effective and rigorous approach.

(3) Real-time systems with random/dynamic characteristics are tough to design 

and verify. Network calculus curves help alleviate this difficulty, and they provide an 

effective and powerful approach for system design, validation, and verification, which is 

hard but of critical importance for real-time systems. The calculus curve approach will 

make it possible to formally analyze and verify the schedulability/feasibility of a 

random/dynamic real-time system. This will also make it possible to analyze and verify 

the feasibility of applying the new online real-time DVS technique and algorithms to 

those random/dynamic real-time systems.

To capture the characteristics of those events/tasks arriving randomly, the concept 

of calculus curve from network calculus domain is adapted, and arrival calculus curves 

are used to characterize the random arrivals of events/tasks. The arrival calculus curve 

makes it possible to establish a more general task model, where no periodicity and
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minimum inter-arrival time are assumed. More importantly, this task model is able to 

accommodate burst arrivals of events/tasks. Similarly, service calculus curves are also 

used to characterize the random and dynamic processing capacity dedicated to 

events/tasks. Based on calculus curves, the author first proposes a history window based 

prediction technique, which is used to predict future computational requirement 

according to calculus curves and history records. The author then develops energy- 

efficient online real-time DVS algorithms, which incorporate the history window based 

prediction technique, and are capable of dynamically adjusting system operating voltage- 

frequency according to the predicted computational requirement. The author validates 

and verifies the feasibility and correctness of the new technique and algorithms in a 

formal way.

The new algorithms are constructed on EDF and fixed priority policies, and have 

the capability to predict the computational requirement due to the random arrivals of 

future events/tasks. This implies that the real-time DVS proposed in this dissertation is 

based not only on the existing computational requirement but also on that which may be 

requested in the future. This feature distinguishes the new algorithms from existing 

online real-time DVS algorithms. Predicting the future computational requirement is 

critically important in a dynamic random hard real-time environment. In such an 

environment, conducting DVS without predicting future computational requirement may 

lead to system failure even if feasibility analysis is well conducted at the system design 

stage.

The new algorithms are also able to accommodate and respond to not only the 

variation between the predicted and the actual event/task arrivals but also the variation
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between the predicted and the actual execution times of tasks. This feature distinguishes 

the new algorithms from those static/offline real-time DVS algorithms that are based on 

static information.

5.1 Calculus Curves

In this section, the concept of calculus curves from network calculus domain is adapted to 

characterize the arrivals of events/tasks and the system processing capacity for 

events/tasks. Network calculus is a mathematical approach originally intended to model, 

analyze, and design networks. The foundation of network calculus is the mathematical 

Min-Plus and Max-Plus algebras, which are useful for constructing mathematical models 

of discrete event systems. In recent years, network calculus has been intensively studied 

for flow processing in a variety of areas such as network, multimedia, embedded systems 

and so on. One of the important features of the network calculus approach is that it 

facilitates system design, validation, and verification, and enables system design to be 

formally proved and verified. The network calculus approach has led to many important 

research outcomes that provide deep insights into communication networks, multimedia 

systems, and embedded systems.

In the network calculus domain, network calculus curves are used to characterize 

flows and the processing capacity of network nodes. In this dissertation, they are adapted 

to characterize random arriving events/tasks and the processing capacity of real-time 

systems.

5.1.1 Arrival Curve



www.manaraa.com

92

The arrival curve is used to characterize the random arrivals of events/tasks in a hard 

real-time system. If a function R(t) (t > 0) is used to denote the number of a class of 

events that may arrive at the system within [0, t], the arrival curve for this class of events 

is defined as follows.

Definition 5.1 Arrival Curve a(t) is a wide-sense increasing function (i.e., a(t) < a(s) for  
all t < s). For V.v > 0, / > 0 it satisfies: R(s+t) - R(s) < a(t), and aft) =0 
fo r  Vt < 0.

According to this definition, a(r) (t > 0) is the upper bound of the number of a 

class of events that may arrive in any time interval of length t, although the arrivals of 

events may be random (including burst arrivals).

5.1.2 Service Curve

The service curve is used to characterize the processing capacity (in terms of processor 

cycles) of a hard real-time system. If a function C(t) ft > 0) is used to denote the number 

of cycles that a system can offer to the process of a class of events within [0, /], the 

service curve for this class of events is defined as follows.

Definition 5.2 Service Curve f (t )  is a wide-sense increasing function (i.e., fi(t) <f (s)  for  
all t < s). For\/s  > 0,t > 0 it satisfies: C(s+t) - C(s) > fi(t), and (i(t) =0 
fo r  Vr < 0.

According to this definition, fift) (t > 0) is the lower bound of the number of 

cycles that the system can offer to the process of a class of events in any time interval of 

length t.
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5.2 System and Task Model

Consider a hard real-time system that is designed to process m classes of events. The total 

capacity for processing these events is characterized by a service curve fi(t) (which is the 

minimum service curve that makes class 1 to class m schedulable), and the corresponding 

frequency is fmax. Given an i (l<i<m), the arrivals of the events of class i are characterized 

by an arrival curve a,(r) (r >0). To facilitate later analysis, an a0(0 is defined as oo(t) =0 

for t >0. Events of every class arrive at the system randomly. For every event of a class i, 

a task Ti will be invoked and executed once. For every task 7), it is characterized by a 

triple (r„ dj), where r, is the release time (this is set when an event arrives), e, is the 

predicted WCET according to a benchmark processor with operating frequency f s, and d, 

is the relative deadline. Multiple instances of a task may exist in the system concurrently.

5.3 Schedulability/Feasibility Analysis

In a hard real-time environment, all tasks must be finished no later than their deadlines; 

DVS in such environment must take the timing constraints into account, and guarantee 

that all deadlines are met. The schedulability analyses conducted in this section are used 

to find the minimum necessary voltage-frequency level for processing events, and are the 

foundations for the new online real-time DVS algorithms.

The schedulability analysis according to EDF policy is conducted in Section 5.3.1 

and that according to fixed priority policy is conducted in Section 5.3.2
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5.3.1 Schedulability/Feasibility Analysis According to Preemptive Earliest Deadline 
First Policy

With this policy, events from all classes are processed according to their deadlines (i.e., 

earliest deadline first). Tasks with earlier deadlines can preempt the executions of those 

with later deadlines. Tasks with identical deadlines will be processed in First Come First 

Serve (FCFS) fashion. Given m classes of events with arrival curves ai(r) to am(t) and the 

total processing capacity that is characterized by f}{t), the following Theorem 5.1 gives a 

necessary and sufficient condition for the schedulability test according to preemptive 

EDF policy.

Theorem 5.1 fi(t) > ^ ( a -  dj )x . e j  x f s) (W > 0) <=> class 1 to class m are
;=i

schedulable with EDF policy.

Proof: <= By contradiction.
m

Suppose 3?’ p { n < Y 4{aj{t ' -dj )x.ej ' x f , )  ■
i=i

=> 3 1 , , 312 ((t2 - / , )  = ? '), and t\ is the start point of a busy period (no system 
idle during this period). Suppose class 1, ..., class m are in increasing order of 
relative deadline, and their relative deadlines are d\, dm.

Case 1 (special case): 3 k < m, (t\ + dk) > t2- In this case, the following holds: 
a,  (t2 -  dj  -  ti ) = 0 for ( k <j  < m).
Class 1 to class (£-1) are schedulable within [?i,

k-1
=> ^ ( t 2 - t l ) > ' ^ ( a j (t2 - d j  - t i ) x e j X f s)

7=1
4-1 m

j3(t2 - t l ) > Y , ( a j (t2 - d J - t l ) x e J x f J  + ^ 0 .
7=1 7 = *

m
i.e., > ^ ( (Xj i t ' - d  J x e j  x f s ) .

7 = 1
This contradicts the assumption.

Case 2: (ti + dm) < ti.
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Class 1 to class m are schedulable within [fi, t2] 

=> P(t2 -  r , ) >  J  (ccj (t2 - d j  - t ^ x e j X f , )
i=i 
m

i.e., P ( t ' ) > Y di a j ( t ' -dj ) x e j x f t ) .
j=i

This contradicts the assumption.

t" t ‘ t'+dj

time

Ti arrives

Figure 5.1 Schedulability analysis according to preemptive EDF policy.

=> By contradiction.
Suppose that class 1 to class m are unschedulable, t' is the arrival time of the 
first task (say Ti) that misses its deadline, and it belongs to class i.

Case 1: t' is the start point of a busy period (Figure 5.1). (Suppose that class 
1, class 2, . . . ,  class m are in increasing order of relative deadline.) 
Because the events whose deadlines are later than that of 7) will have 
no influence on the following holds:

Y^{aj (t’+di - t ' - d J) x e j x f s} + {a i (t'+d, - t ' - d l ) x e i x f I )> /3(t'+d, - t ' )  •

i- 1

Let t =di, then [at (t -  d j ) x  ej x f s } + {a i ( t -  d i ) x e t x f s} > fi{t) holds.
j=i

This contradicts the given condition.

Case 2: t' is not the start point of a busy period, but t" is the nearest (from 
the left side of t ' ) start pint of a busy period (Figure 5.1). (Suppose 
that class 1, class 2, . . . ,  class m are in increasing order of relative 
deadline.) Because the events whose deadlines are later than that of 
Ti will have no influence on 7„ the following holds:

£  {cijit’+di -  t ' - d ^ x e j X f J  + ia , (t'+d, -  f - d ^ x e . x  f s}> f i i t ' +d. - t ”)
7=1

(1< k < m, and kfii).
Let t= (t' + di - 1 "), then the following holds:

£
Y J â 1(t - d j ) x e j x f s} + {ai ( f - r f 1. ) x e , .x / J >  /?(/)•
7=1

This contradicts the given condition. □
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Theorem 5.1 states that for all the events of class 1 to class m to be feasibly 

processed in time according to EDF policy, the processing capacity p(0 must satisfy the 

above condition, and that the processing capacity P(?) that satisfies the above condition is 

high enough for processing the events of class 1 to class m.

5.3.2 Schedulability/Feasibility Analysis According to Preemptive Fixed Priority 
Policy

With this policy, a priority P, (1 <i<m) is assigned to every event of class i. Throughout 

this chapter, it is assumed that for any P„ 1<P, <m. For any pair of priorities (P„ Pj), class 

i has higher priority than class j  if (P, < Pj). Events from all classes are processed 

according to their corresponding priorities (i.e., highest priority first), and tasks with 

higher priorities can preempt the executions of those tasks with lower priorities. Tasks 

with identical priorities will be executed in FCFS fashion. Given m classes of events with 

arrival curves a\(t) to am(t) and the total processing capacity that is characterized by /ft),  

the following Theorem 5.2 gives a necessary and sufficient condition for the 

schedulability test according to preemptive fixed priority policy.

Theorem 5.2 Let p  (t) = max{jtf(w)-Y ( a i ( u ) x e i x f ) )  ( l < i < m ) ;
0 < « < / i=i

P ' } (t ) satisfies: max{min{« : j (t + u)>  ory( r ) x e ; x f s }} < dj

<=> class 1 to class j  are schedulable with fixed priority policy( 1 < j<  
m).

Proof: <= By contradiction.

Suppose 3i,3 t' f t ,  (t'+u) > (or. (t') x et x f s)=>u> d t , i.e.,
P \  (r,+di)<(flr,(/,) x e I. x / J).

=> 3/ , ,3t2 ((t2 —/,) = ?’) , and t\ is the start point of a busy period (i.e., 
system is never idle during this period of time). Now, suppose that 
( (ai{t2 - r , ) - * - l ) x « .  x f s) < f i \  (t2 + d i) < ( ( a i(t2 - t l ) - k ) x e i x f s) (0
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< k). This implies that k tasks from class i will miss their deadlines in interval 
[?i, t2]. But this contradicts the given condition.

=> By induction.
Step 1: Base case, k= 1. It can be proved by contradiction. Suppose that class 1 

is unschedulable. => 3/' (/?', (t’+rf,) < a l ( t ' ) xe{ x f s) . But this
contradicts with the given condition. Thus Theorem 5.2 holds for k= 1. 

Step 2: Suppose that Theorem 5.2 holds for k=l  to i.
Step 3: Prove Theorem 5.2 holds for &=(/+l) by contradiction. Suppose that 

class 1 to class (i+l) are unschedulable. To be more specific, class 
(i+l) is unschedulable (because class 1 to class i are schedulable 
according to assumption and have higher priorities than class 0+1), 
they will not be influenced by class (i+l)).
=> 3t' (t’+dM ) < a i+l( t ' ) xeM x / s) . But this contradicts the
given condition. Thus Theorem 5.2 holds for &=0'+l). □

Theorem 5.2 states that for all the events of class 1 to class m to be feasibly 

processed in time according to fixed priority policy, the processing capacity p(t) must 

satisfy the above condition, and that the processing capacity p(0 that satisfies the above 

condition is high enough for processing the events of class 1 to class m.

5.4 Online Real-Time DVS Algorithms

5.4.1 History Window Based Prediction

The history window based prediction technique is employed to predict the requirement of 

computation within a future time interval (i.e., the prediction interval, see Figure 5.2 and 

Figure 5.3) based on history records.

Let tr be the current time. Suppose there are n existing tasks T\ ,  V 2 , ..., T’n in that 

order in the task queue. The absolute deadlines of T\ ,  ..., T ’n are D\ ,  ..., 

respectively. To predict the computational requirement, both the EDF based algorithm 

and the fixed priority based algorithm use a history window, which contains w recording
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points (q, ..., tw) (see Figure 5.2 and Figure 5.3). The history window will slide with the 

advance of time, and the recording points will be updated accordingly. At every 

recording point tq (1< q < w), the number of cycles that have been offered to every class 

is recorded. These records can be easily constructed if a counter is used for every class. 

The counter is used to record the number of cycles devoted to the process of the events of 

that class. Suppose that J9J is used to denote the number of cycles that were offered to

class j within interval [tq, tw). Bj can be easily obtained according to the information 

recorded at the recording points. To facilitate later analysis, a remaining computational 

requirement function S(t — tc) is defined as follows.

Definition 5.3 (remaining computational requirement functionS(t-tc)) Given a time 
point tc, the remaining computational requirement (due to a set of 
specified ready tasks) function at tc is defined as S(t-tc), which is the 
minimum computational requirement that the system should satisfy at 
time t (t > tc), so as to make every task (in the task set) finish no later 
than its deadline.

In addition, to facilitate later description, S(f, t) is used to denote the number of 

cycles a system can offer within an interval of length t under operating frequency/.

The objective of the prediction is to find an upper bound as low as possible for the 

computational requirement that may be requested in a specified future time interval. The 

rationale behind this idea is that a lower upper bound implies less computational 

requirement, and hence a lower frequency is sufficient enough for completing the 

computations in a timely way.

5.4.1.1 History Window Based Prediction for EDF Policy
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In Figure 5.2, suppose that tasks T\ ,  ..., T'n are in non-decreasing order of deadline, and 

their deadlines are D \,  ..., D'n.

recording point tk
<----------- - >

history prediction
interval

T

*1 *2 *k *w D i D , D D n

| | I I I  1
time

V
history window

Figure 5.2 History window based prediction for EDF policy.

Consider a prediction interval [tc, D',] (l<i<n). Under EDF policy, the 

computational requirement due to future arrivals of events from class j  (I<j<m) that 

should be satisfied by a time point t (tc<t  <D'i) can be computed as

( a J( t - t c - d j ) x e j X f s).

Given a recording point tk in the history window, it can also be computed as 

-  d j ) x e  j x f s -  B kj ) .

The smallest one computed according to the history window can be obtained as 

ro/11 s a j ( ' - » * -  d j y* x fs -  s kj ) •1<*<(W-1) J  J  J  J

Thus, under EDF policy, the total computational requirement that should be 

satisfied by time t can be computed as

m
(Y  min{(a. ( / -f r -</ .)xe .-x/,), min ( a , ( t - t k -  d ]) x eJ x f s -  Bj )) + St . ( t - t r)),
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where S T. (t -  tc) is the remaining computational requirement function (at tc) due

to tasks T \ ,  . . . ,  T 'i .  In particular, S T .̂  (t -  tc) =  8  ( t - t c) , which is the remaining

computational requirement due to tasks T \ ,  . . . ,  T 'n.

Suppose the system is operating under frequency f,. The following condition 

should be satisfied so as to meet the computational requirement:

m
S ( f ,  , (t -  t ( )) > min{(or. ( t - t c -  cl ; )x  ej x f s), ( t - t k -  d j ) x e; x f s -  B))}

j=i

5.4.1.2 History Window Based Prediction for Fixed Priority Policy

recording point tk 

<-
history

K Hprediction
interval

h *2 tk tw D j D i D n D !

--------Y-----
history window

Figure 5.3 History window based prediction for Fixed Priority policy.

In Figure 5.3, suppose that tasks T \ ,  . . . ,  T 'n are in non-increasing order of priority, and 

their priorities are P \ <  . . . <  P ’n, i.e., T \  has the highest priority and T 'n has the lowest 

priority.

Consider a task T ’i (l</<n). To make T \  to T \  finish no later than their deadlines 

under fixed priority policy, the computational requirement due to the future arrivals of
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events from class j  (1 </<(P', -1)) that should be satisfied by a time point t (t, < t <D',) can 

be computed as

( a j ( t  -  tc ) x  e j x f s ) .

Given a recording point r* in the history window, it can also be computed as

( a J( t - t k ) x e J x  f s - f l * ) .

The smallest one computed according to the history window can be obtained as 

min ( a  :(t -  t k ) x  e j x  f  -  B k, ) .

The computational requirement due to the future arrivals of those tasks that have 

priorities not higher than T\  that should be satisfied at a time point t (t, < t <D\) can be 

computed as

P ' p,

where /3' . (t -  t c) is the minimum service curve for class P', to class m to be 

schedulable.

Given a recording point 4, it can also be computed as

m

( ' - * * ) - £  **>•
j =p \

The smallest one computed according to the history window can be obtained as

m
,<™n {P'PiA i - f t ) -  £  B ) ) .

J = P ,

Thus, to make tasks T\  to T', finish no later than their deadlines under fixed 

priority policy, the total computational requirement that should be satisfied by time t can 

be computed as
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P '  - 1

( V  min{( a  (t -  r,.) x e x /  ),min {a At  -  t k ) x <? x /  -  B *)}“ j ' ; * 7 * 7

+ min{ /?V  (f - / f ), min (/?'p. (r -  t k ) -  Y  B k )} + S T. (t -  t c)) ,
1 < * < ( h - 1 ) '  7  1

where ST. (t - t c) is the remaining computational requirement function (at tc) due

to tasks T  i, T'i. In particular, S T^(t -  tc ) = S  ( t - t c) , which is the remaining

computational requirement due to tasks T\ ,  T n.

Suppose the system is operating under frequency f .  The following condition 

should be satisfied so as to meet the computational requirement due to T\  to T', and the 

tasks that may arrive in the future:

P '  - I

+ min{ J3'p. ( t -  tc), min ( f i ' p. (t -  t k ) -  V  B *)} + S T. (t -  tc)) {tc<t<D'i).' l<*<(w-l) ' , J 1J = p ,

5.4.2 Prediction-Enabled EDF Based Online Real-Time DVS Algorithm

In Figure 5.4, PAEDF_P works in a similar way to EDF  except that it employs the 

history window based prediction technique to predict computational requirement, and has 

the capability to adjust voltage-frequency level according to computational requirement 

so as to save energy. Basically, whenever PAEDF_P is invoked, it first constructs the 

remaining computational function ST. ( t - t c) (1 <i<n) (step 2). This is accomplished by 

computing the computational requirement that must be satisfied by every deadline, 

starting from D \ until D'n. ST. ( t - t r ),  ..., ST. ( t - t c) can be obtained by one round of 

scanning tasks T\ ,  ..., T'n.
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P A E D F _ P

1 f c =0;
2  C o n s t r u c t  S T ( t — t c )  ( l < i < n ) ;

3 f o r  ;=  I t o  n d o

R,o,al= S T ( t -  t (. ) ;
f o r  j = l  t o  d o

Amm= a J( t - t r x y ; ,
f o r  /:=1 t o  (w  -1 ) d o

A = c c j ( t - t k - d ]) ^ e ] ^ f s

- (WindowJ - Window*);
9 i f  (A < Amm) Amm=A\
10 f t  to tal—  R t o t u &  Amin,
11 f  ^  S ( f h ( t - t c ) ) > R , o , u l  (tc <  t <  D ' i );
12 if (/,>/) f, =f ;
1 3  f o r ; =  1 t o m  d o

1 4  f o r  £=1 t o  (w>-1 ) d o
/.• i ,*+i15 Window j = Window j ;

1 6  f o r  j - 1 to  m  d o

17  f o r  k=2 to  d o

18 Window* =( Window* - Window\);

19 Window'j- 0 ;

2 0  S e t  t h e  o p e r a t i n g  f r e q u e n c y  to  f c;
21 P ro c e s s  t a s k s  a c c o r d in g  to  t h e i r  d e a d l in e s  u n t i l  T'x 

c o m p le te s ;  ( W h e r e f x =  f „  a n d  f x > / ,  f o r  ( x + l ) <  l< n.)

Figure 5.4 Power-aware prediction-enabled EDF algorithm.

Frequency/ (l<i<n) is derived according to the computational requirement due to 

the remaining computational requirement and the computational requirement that may 

arise in the future (steps 4-11). It is easy to see from Figure 5.4, frequency f  (1 <i<n) is 

computed as the smallest value that satisfies the following inequality:

m
S( f ,  At  ~ t r )) ^ ( Ymi n{ ( a j ( t - t r - d j ) x e  x / J ,  min (a, ( t - t k - d ,  )xe,  x f r -  B*)}

j=i

+ S T, ( t - t e)) (tc< t <D'i),
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where 5* = ( WindowJ - Window*), and Window" and Window* are the history

records for class7  at rH and tk, respectively.

f c is set to the maximum f  (1< i < n) (step 12). Steps 13-19 are used to update the 

history window. Note that between two consecutive frequency adjustment points, the 

processor cycles devoted to every class j  (1< j  < m) will be added to Window". This

operation is incorporated into step 21. After the history window is updated, current 

frequency is set to f c, and tasks are processed according to the EDF rule until T 'x 

completes (step 21). T 'x  is the last task (in the sequence of T ' \ ,  . . . ,  T 'n)  that the frequency 

computed with respect to its deadline D 'x is equal to /f. (Note that T \ ,  . . . ,  T 'n are in non­

decreasing order of deadline.)

Proposition 5.1 (for PAEDF_P policy) /,  < / max (1 <i<n), where f mdx is the frequency 
corresponding to /3(t).

Proof: In Figure 5.5, assuming that the frequency setting is f inax before time tc.
Because the remaining computational requirement at tc is less than or equal to the 
theoretical remaining computational requirement at tc (due to the fact that the 
number of the actual arrivals of tasks is always less than or equal to the theoretical 
upper bound number), the following holds:
ST. ( t - t c) < S ' ( t - t c)) (tc <t) ,

where S*{t - f c)is the theoretical remaining computational requirement at time tc.

tc ... D ) ...

time

Figure 5.5 Frequency analysis.

Thus the following holds:
ST. { t - t c) < 8 ' { t - t c) {tc <t) ( t - t c) < 8 \ t - t c) (tc < t < D \ ) .

Because class 1 to class m are schedulable under f ^ ,  the following condition is 
always satisfied:
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S ( / ™ , . ( ' - ' r ) ) ^ ( Z ( a O ( ' - ' r  - d ^ x e ^ f J  + S f t - t ^ )  (t c <t  < D' , ) .
>=1

Because
m

^m in{(orj (f - ? r - d j ) x e J x f s), min ( a f t  -  tk -  d ]) x e ] x f s -  B^)}
J = l \<k<(w  I )  

< £ ( o r y( / - r f - d j ) x . e j X f s ) ( t r < t < D \ ) ,
y=i

the following inequality must hold:

5  ( /m a x  ’ (f -  /  »  -  (X  min( (a ; 0 - t r - d  ) x e j X  f  ), min { a f t  -  tk -  d ) x e . x /  -  Bk)} 

Thus, a frequency /  that is not higher than f niax can be found to satisfy the above 
inequality, i.e., f  is less than or equal to fmax and it satisfies the following 
condition:

m

+ ST, ( t - t c)) (tc <t  < D\  ) .

The following proves that under frequency f c, the remaining computational 
requirement at D'x is less than or equal to the theoretical remaining computational 
requirement at D'x.
Because
f c =fx =MAX{f u f 2, . . . , fn}
and

m
S ( f x , ( t - t c))> (]T min{(or (t - t (. - d j ) x e j x  /  ), min {a}( t - t k - d  ) x e  , x f s -  Bk)}

“  J J J l < i t S ( w - l )  3 3 3 3

this indicates that the frequency/ (fc> /„) is high enough to satisfy the predicted 
(theoretical) computational requirement within [rr, D'x\ and the computational 
requirement due to tasks T'x. Thus, the remaining computational
requirement at D'x must be less than or equal to the theoretical remaining 
computational requirement, i.e., there is no unreasonable remaining computational 
requirement at D'x under frequency f c. In particular, if x  is equal to n, the 
frequency f c is high enough to satisfy the predicted theoretical computational 
requirement within [?r, D'n] and the computational requirement due to tasks 
T'n, and there is no unreasonable remaining computational requirement at D'n 
under frequency f c.
Now, the assumption made at the very beginning of the proof can be removed. □

Theorem  5.3 I f  class 1 to class m with arrival curve a f t )  to am(t) are schedulable with 
service curve f ( t )  under EDF rule, then they are schedulable under 
PAEDF_P.
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... tc\ tr2 ■■■

time

Figure 5.6 Schedulability analysis.

Proof: In Figure 5.6, tc\ and tc2 are two consecutive frequency adjustment points, and the 
frequency setting at tci is f<\. For interval [tc 1, tc2], only the following needs to be 
proved: (I) frequency f ci is high enough to satisfy the predicted theoretical 
computational requirement plus the remaining computational requirement at tci 
throughout [rci, fc2] (so, no deadline miss happens throughout [rfi, t<-2]), and (2) 
under frequency f c 1, no unreasonable remaining computational requirement at rr2, 
i.e., the remaining computational requirement at time fc2 is less than or equal to 
the theoretical computational requirement at tcz (so, no deadline miss is caused 
due to the frequency adjustment at tc 1). It is easy to see from the proof of 
Proposition 5.1, both (1) and (2) are true. Because this holds at every frequency 
adjustment point, Theorem 5.3 holds. □

5.4.3 Prediction-Enabled Fixed Priority Based Online Real-Time DVS Algorithm

In Figure 5.7, PAPRI_P works in a similar way to fixed priority policy except that it uses 

the history window based prediction technique to predict the computational requirement, 

and is able to adjust the voltage-frequency level according to the computational 

requirement so as to save energy. Basically, whenever PAPR1_P is invoked, it first 

constructs the remaining computational function ST. ( t - t c ) (1 <i<n) (step 2). Similar to

PAEDFJP, STi (t - tr ) ,  ..., ST,' (t - t c) can be obtained by one round of scanning the

tasks T'u ..., T'n. To com pute/, PAPRIJP first computes the computational requirement 

due to those future events that have higher priorities than T\ (steps 5-10). It then 

computes the computational requirement due to those future events that have priorities 

not higher than T', (steps 11-16). Frequency f  is then determined according to
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P A P R I _ P

1 /< =0;
2 C o n s t r u c t  S T (t  — t c )  (1  < i< / i ) ;

3 f o r  i '= l t o n  d o

4 R,olat= S r (t -  t r ) ■
5 f o r  j =  1 to  (P ’j -1 ) d o

6 Am.r= c/ j ( t — t r ) X e j x /  v.
7 f o r  lr= l t o  (w> -1 ) d o  

A=£Xj(t - t k ) x e  j x f s

- (WindowJ - Window *);
9 if  (A < Amm) Amin=A;
1 0  Rtotal~ RfotaP’ Amini

11 Bmin= / 3 ' p, ( t - t c )-,

12 f o r £ = l  t o ( w - l ) d o

13 B = p p. ( t - t k )-,
14 f o r  j =  P'j t o  m d o

15 B= B - (WindowJ - Window*);
16 if  (B < Bmin) Bmin= B-
1*7 PUHul P  unrip B mun,
18 y; + -  5(/;, ( t- tc))>R,olal u c < t< d \ y,
19 if  (/■>/,) / f = /•;
2 0  f o r  7=1 to  m d o

2 1  f o r  k=\  t o  (w  -1 ) d o

2 2  Window* =  Window**1;

2 3  f o r  7=1 to  m  d o

2 4  f o r  k= 2  t o  w  d o

2 5  Window* = (  Window* - Window\ );

26Window) = 0;
27 S e t  t h e  o p e r a t i n g  f r e q u e n c y  to  f c;
28 P ro c e s s  t a s k s  a c c o r d in g  to  t h e i r  p r io r i t i e s  u n t i l  

T'x c o m p le te s ;  ( W h e r e f x =  f „  a n d  f x > f k f o r  
e v e r y  f k t h a t  is  c o m p u te d  w i th  r e s p e c t  to  D'k a n d  
P't >P'x.)

Figure 5.7 Power-aware prediction-enabled fixed priority algorithm.

the total computational requirement (step 18). It is easy to see from Figure 5.6, frequency 

fi is computed as the smallest value that satisfies the following inequality:
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S(fi , ( t - t c))> ( ^  min{( a  j ( t  -  t(. ) x  e j x  f s ), ^min ^ ( a j ( t - t k ) x e j x f s -  B*)}

m
+ min{ (r -  t ), min ( 0 ' p. (t -  t k ) -  Y  B*)} + S T. (t -  tc)) (tc<t<D'i),

1 l < / t  < (  w - 1 ) ' r""Z, '
s  = p \

where B* = ( Window" - Window* ), and WindowJ and Window* are the history

records for class j  at tw and r*, respectively, and /3'p. ( t - t c) is the minimum service

curve for class P', to class m to be schedulable. Note that f i 'p. (u) can be constructed in

the system design stage.

f c is set to the maximum /  (1< i < n) (step 19). Steps 20-26 are used to update 

history window. Note that between two consecutive frequency adjustments, the processor 

cycles devoted to every class j  (1< j  < m) will be added to Window". This operation is

incorporated into step 28. After the history window is updated, current frequency is set to 

f c, and the tasks are processed according to the highest priority first rule until T’x 

completes (step 28). T x is the last task (in the sequence of T \,  ..., T'n) that the frequency 

computed with respect to its deadline D'x is equal to f c. Note that T \, ..., T'n are in non­

increasing order of priority.

Proposition 5.2 (for PAPRI_P policy) f t < / majs (l</<n), where / maA is the frequency 
corresponding to /3(t).

Proof: In Figure 5.5, assuming that the frequency setting i s / ^  before time t( .
Because the remaining computational requirement at tc is less than or equal to the 
theoretical remaining computational requirement at tc (due to the fact that the 
number of the actual arrivals of tasks is always less than or equal to the theoretical 
upper bound number), the following holds:
ST. { t - t c) < S \ t - t r) (tc < t) ,

where S * ( t - t c) is the theoretical remaining computational requirement at time tc.
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Thus the following must hold:
dT. { t - t c) < S \ t - t c) (tc <t ) => STX t - t r ) < d \ t - t r ) (tr < t < D \ )

Because class 1 to class m are schedulable under f nmx, at any time point t (tc<t 
<£>',-), the following holds:

j=i
Because
P \ -  1

V  min{( a  (r -  t r ) x  e x f s ), min ( a  (t -  tk ) x £> x / B k)}J l<k<(w-1) J J J
J -  1

-  X  -  l r ) X e ) X f s )  ( t c < t < D ' . )
j= 1

and
m

min{ p '  P. (t -  tr ), min (&'r . {t -  tk ) -  ^  B k )} < /3'P. (t -  tc) (tc < t < D \ ) ,
' \<k<( w — 1) ‘ '

the following inequality must hold:
P \ -  1

5(/max’(?- fr))^ ( X  min{( a  (t -  t r ) x e yx / , ) ,  min (or .(r -  ( , ) x c  x f s -  B k)}
 ̂ ' !</: <( w — 1) J j j

+ min{ 0 ' P, ( t - t c), min (/3'p. ( t - t k ) ~  Y B k )} + S T, ( t - t c)) (tc<t<D'i).1 1<*<(W'-1) ‘ J '
J = P  I

Thus, a frequency/; that is not higher than f max can be found to satisfy the above 
inequality, i.e., f  is less than or equal to fmax and it satisfies the following 
condition:

p \-1
S(f,  , ( t - t c))> ( V  min{( a  (r -  t r ) x  x f s), min ( a  f t  -  tk ) x e x /  -  B k )}

m
+ min ( P ' P. ( t - t e), min (/?' p, (t -  t k) -  Y B k )} + S T, f t  -  tc )) (tc< t< D ’i).

1<*<<W-1) 1 “ J, J '_/=/> (

The following proves that under frequency f c, the remaining computational 
requirement at D'x is less than or equal to the theoretical remaining computational 
requirement at D'x.
Because
f c =fx =MAX[fuf2, . . . , fn}
and

P \  -  I

s (fx f t - t r))> ( £  min{( a  j ( t  -  tc) x e j  x  f  ), min ( a  f t  -  t k ) x  e x /  -  B k )}
J J 1< *< (W -1)  J  J  ■ J

m
+ mm{ / 3 ' p. min {f i 'p, ( t - t k ) ~  Y B k )} + S T. (t -  tc)) (tc<t<D 'x),

* I < k < (W -1) * -Yd- *
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this indicates that the frequency f-  (fc> f n) is high enough to satisfy the predicted 
(theoretical) computational requirement within [tc, D'x] and the computational 
requirement due to tasks T \ , . . . ,  T 'x . Thus, the remaining computational 
requirement at D'x must be less than or equal to the theoretical remaining 
computational requirement at D'x, i.e., there is no unreasonable remaining 
computational requirement at D'x under frequency f c. In particular, if x is equal to 
n, the frequency f r is high enough to satisfy the predicted theoretical 
computational requirement within \tc, D ’n] and the computational requirement due 
to tasks T ' x , . . . ,  T 'n , and there is no unreasonable remaining computational 
requirement at D'n under frequency f c.
Now, the assumption made at the very beginning of the proof can be removed. □

Theorem 5.4 I f  class 1 to class m with arrival curve a f t )  to am(t) are schedulable with 
service curve B(t) under fixed priority rule, then they are schedulable 
under PAPR1_P.

Proof: The proof can be accomplished in a way similar to Theorem 5.3. □

5.4.4 Further Discussion on the Algorithms

• Complexity analysis. It is easy to see from Figures 5.4 and 5.7 that the 

complexities of both PAPR1_P and PAEDFJP are 0(wnm), given m classes of 

events, n tasks in the task queue, and a history window of width w. Because w is 

usually a small constant, the complexities of both PAPRI_P and PAEDF_P are 

dominated by n and m.

• Online real-time DVS without prediction. So far the author discussed the 

online real-time DVS based on history window based prediction. An interesting 

problem is whether the online real-time DVS could be conducted without 

prediction, i.e., frequency is determined solely based on existing computational 

requirement. Unfortunately, this naive idea does not work. In Section 5.5, twu 

algorithms (PAPRIJNP and PAEDF_NP) that attempt to conduct DVS without 

prediction are constructed, and both of them failure. This indicates that in a
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random hard real-time environment, online DVS without prediction may cause 

system fail. This is of great importance for conducting online DVS in hard real­

time systems.

• Accommodate and respond to variations. From Figure 5.4 and Figure 5.7, it is 

easy to see that both PAEDFJP and PAPRI_P conduct frequency adjustment at 

a time point when a specified existing task actually completes, and the 

completion of this task depends on the actual execution times of other tasks and 

the actual arrival of events. If the actual execution times of those tasks are less 

than the predicted WCETs of them, the specified task will complete earlier than 

it is predicted. Similarly, if the actual number of arrived events is less than that 

of the predicted events, the specified task will also complete earlier than is 

predicted. This implies that the frequency adjustment contained in both 

PAPRI_P and PAEDF_P depends on the actual rather than the predicted 

execution times of tasks and the actual rather than the predicted arrival of 

events. Therefore, both PAPRI_P and PAEDFJP are able to accommodate and 

respond to the variation between the WCETs (predicted execution time) and the 

actual execution times, and the variation between the predicted arrivals of events 

and the actual arrivals of events.

5.5 Simulation Analysis

This section studies the effectiveness of the online real-time DVS algonthms by 

simulation. To facilitate the evaluation, it is assumed that (1) the time overhead and 

energy expense of voltage-frequency switching is negligible [61, 62], and (2) the time
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overhead and energy expense of the algorithms are negligible. As a matter of fact, these 

assumptions are made, explicitly or implicitly, in almost all real-time DVS research 

except those that specifically address those issues. As mentioned before, although energy 

saving is the objective, meeting timing constraints is required in hard real-time 

environments. So, these algorithms are evaluated along two dimensions, i.e., energy 

consumption and deadline miss. It is necessary to check how well these algorithms 

perform in energy saving when compared to those algorithms that do not conduct DVS. 

To check how well these algorithms perform in meeting timing constraints, they are 

compared with two other algorithms (i.e., PAPRI_NP and PAEDF_NP), which are 

constructed in a similar way to PAPRIJP and PAEDF_P except that they conduct DVS 

without prediction.

5.5.1 Simulation Settings

The simulation contains 9 classes of events, and the settings for every class are listed in 

Table 5.1. The priorities assigned to class 1, class 2, ..., class 9 are P\, Pj, • ••,  P9 , and 

they satisfy: Pi < P 2  < . . . <  P 9 , i.e., class 1 has the highest priority and class 9 has the 

lowest priority. See Table 5.1, when infinite levels of frequencies is assumed, the highest 

frequency is set to 90MHZ, and the corresponding voltage is 5.2V. Under this 

assumption, frequency can be set to any value between the highest frequency and the 

lowest frequency (OMHZ), and the voltage will be adjusted accordingly. When limited 

levels of frequencies is assumed, there are four optional frequencies, i.e., 90MHZ, 

54MHZ, 36MHZ and 18MHZ, and the corresponding voltages are 5.2V, 3.3V, 2.2V and 

1.0V. Hence, the frequency and voltage adjustment is limited. The width of the history
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window is set to 5 except in Figure 5.10, where it is also set to 10 so as to study the 

energy savings under different widths of history window.

Table 5.1 Simulation Settings

class processing
task

WCET 
(under 
benchmark 
frequency 
/ v= 1M1IZ)

relative
deadline priority

a(t) (t
5*0) 
(a(t)=0 
for t<0)

1 Ti 8ms 10ms P i 250/+5

2 t2 8ms 10ms Pi 250f+5

3 t3 5 ms 8ms P3 400/+8

4 Ta 5 ms 8ms Pa 400/+8
5 t 5 5 ms 8ms Ps 400/+8
6 t6 3 ms 12ms P6 500/+10
7 Tn 3 ms 12ms Pi 500/+10
8 3 ms 12ms P» 500/+10
9 t9 3ms 12ms P9 500/+10

infinite 
levels o f 
frequencies

Limited 
levels of 
frequencies

P(0 (t
5*0)
(P(t)=o
for
t<0)

90x106/

90x106/

54x106/

3 6 x l0 6/

18 x l0 6/

voltage
(V)

5.2
5.2

3.3
2.2
1.0

5.5.2 Simulation Results

Figure 5.8 (a) and (b) are the simulation results under infinite levels of frequencies 

assumption. As it is shown that no task misses its deadline with both PAEDF_P and 

PAPRI_P while lots of tasks miss their deadlines with PAEDF_NP and PAPRI_NP. The 

reason is that while PAEDF_P and PAPR1_P conduct frequency adjustment based on the 

computational requirement of existing tasks and that of the predicted future tasks, 

PAEDF_NP and PAPRI_NP conduct frequency adjustment solely based on the 

computational requirement of existing tasks. These results indicate that in a random hard 

real-time environment, conducting DVS without considering future computational 

requirement may lead to system failure (deadline miss). Please note that the setting of (3(0 

is high enough for all events to be feasibly processed in time. (This can be verified by the
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pure EDF and pure PRIORITY algorithms. With both of them, no task misses its 

deadline.) Please also note that because there is no deadline miss with PAEDF_P, EDF, 

PAPRI_P and PRIORITY, the “number of tasks” with each of them is zero (Figure 5.8).

1000
t/D

« 8 0 0CO
* -6 0 0
o
1-400<v
I 2 0 0G

0

D e a d l i n e  Miss

■  PAEDFNP
□  PAEDF_P

□  EDF _ -

■

1 1
1

2 3 4 5 6  7 
t i m e  ( X 1 0 s )

(a)

9 10

4 0 0 0
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a  3 0 0 0  
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c

0

D e a d l i n e  Miss

■  PAPRI_NP 
Q P A P R I P  

□  PRIORITY

J l :
1 2 3 4 5 6 7 8 9  10 

t i m e  ( X I O s )

(b)

Figure 5.8 Deadline miss with infinite levels of frequencies.
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E n e r g y  S a v i n g s

9 10

1 2 3 4 5 6 7 8 9  10  
t i m e  ( X I O s )

(a)

bou
2 5
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5
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Figure 5.9 Energy consumption and energy saving with infinite levels of frequencies.
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Figure 5.9 (a) and (b) are the simulation results under infinite levels of 

frequencies assumption. It is easy to see that the energy consumptions under both 

PAEDF_P and PAPR1JP are much less than those under pure EDF and pure PRIORITY 

throughout the simulation interval. Compared to EDF, PAEDFJP constantly saves 10% 

or more energy (see the bottom figure of Figure 5.9(a)). For PAPRI_P, it saves more than 

61% energy when compared to its counterpart (see the bottom figure of Figure 5.9(b)).

20

g  10oU0>
a  5 w i d t h = 5

w i d t h = 1 0
0

1 2 3 4 5 6 7 8 9  10

66  r - 

65 r '  
So 64 f  -
to I

63 r -£ i 
"  62 i - -
>H |

S .  61
60
59

w i d t h = 5
■wi d th = 10 i f

t i m e  ( X I O s )
1 2 3 4 5 6 7 8 9  10

t i m e  ( X I O s )

(a) (b)

(a) Energy saving by PAEDF_P under different widths of history window

(b) Energy saving by PAPRIJP under different widths of history window

Figure 5.10 Energy savings with infinite levels of frequencies under different history 
window widths.

Figure 5.10 shows that both PAEDF_P and PAPRI_P save more energy under 

history window of width 5 than that under history window of width 10. This indicates 

that wider history window cause more energy saving. The reason is that a wider history 

window provides more points for prediction, and thus provides more opportunities for 

adjusting frequency to lower levels.

Figure 5.11 is the simulation result under limited levels of frequencies 

assumption. It is also shown that the energy consumptions under both PAEDFJP and
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PAPRI_P are much lower than those under their corresponding counterparts. Compared 

to EDF and PRIORITY, the energy constantly saved by PAEDF_P and PAPRI_P is above 

2% and 55%, respectively.

E n e r g y  C o n s u m p t i o n

O EDF 
PAEDF P

1 2 3 4 5 6 7 8 9  10 
t i m e  ( X I O s )

E n e r g y  S a v i n g s

1 2 3 4 5 6 7 8 9  10
t i m e  ( X I O s )

(a)

E n e r g y  C o n s u m p t i o n

□  PRIORITY 
PAPRI P

57. 0

X. 56. 5bo
g 56. 0

OS
a  55. 5

55.  0

1 2 3 4 5 6 7 8 9  10
t i m e  ( X I O s )

E n e r g y  S a v i n g s

1 2 3 4 5 6 7 8 9  10 
t i m e  ( X I O s )

(b)

Figure 5.11 Energy consumption and energy savings with limited levels of frequencies.

Figure 5.9 and Figure 5.11 show that both PAEDFJP and PAPRIJP outperform 

their corresponding counterparts. The reason is that while PAEDF_P and PAPRI J 3 have 

the capability to dynamically adjust the operating frequency according to computational 

requirement, EDF  and PRIORITY always work at the highest frequency. As a result, 

PAEDF J 3 and PAPRI JP  finish the same computational work as their counterparts but at 

reduced energy consumption. This result holds even with limited levels of frequencies 

constraint (Figure 5.11).

Figure 5.9 and Figure 5.11 show that the energy saved by both PAEDF J 3 and 

PAPRI J 3 under limited levels of frequencies is less than that under infinite levels of

A2D
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frequencies. The reason is that with limited levels of frequencies constraint, they can only 

choose from a limited set of frequencies. As a result, they can not always find the most 

suitable frequency (i.e., the computed frequency), and most of the time they have to pick 

a frequency that is close to but higher than the computed frequency, so as to avoid 

deadline misses. This limitation eventually results in less energy saving.

E n er g y  C onsumpt io n
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PAEDF P

1 2 3 4 5 6 7 8 9  10 
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Figure 5.12 Energy consumption and energy savings with varying 
execution/computation time.

With the simulations in Figure 5.12 (a) and 5.12 (b), the actual execution times of 

tasks vary from 10% to 100% of their corresponding WCETs. These simulations are used 

to test how well PAEDF_P and PAPR1JP perform when the actual execution times of 

tasks are different from their WCETs. As shown in Figure 5.12 (a) and 5.12 (b), both 

PAEDF_P and PAPRI_P perform much better than their corresponding counterparts in



www.manaraa.com

118

all simulations. Compared with pure EDF, PAEDF_P saves more than 15% of the 

energy, and PAPRI_P saves more than 61% of the energy compared with pure 

PRIORITY. It is also easy to see that PAEDF_P and PAPRI JP  perform well even when 

the actual execution times of tasks are as low as only 10% of their corresponding 

WCETs. This indicates that both PAEDF_P and PAPR1_P can accommodate and well 

adapt to the variation between the predicted and the actual execution times of tasks.
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CHAPTER 6 

CONCLUSION

In this dissertation, new data structures, models, algorithms, and techniques for real-time 

resource management are explored. The main contributions of this dissertation are 

summarized as follows.

A class of TIT trees is constructed. The TIT* tree is a general data structure that 

can be applied to a wide variety of real-time scheduling systems to perform the 

schedulability test of tasks (or messages). It can effectively reduce the average costs of 

the schedulability tests. The TIT-V tree can be applied to the schedulability tests of a 

class of parallel/distributed real-time systems, and the complexity of the corresponding 

schedulability tests can be reduced from 0(m 2nlogn) to 0(m\ogn+m\ogm). The TIT-RL 

tree can be applied to the online admission control in a uni-processor based real-time 

system, and the complexity of the online admission control can be reduced from 0(n2) to 

O(nlogn). The TIT-RL tree can also be used as the building block for a class of 

parallel/distributed real-time systems. Compared to those non-TIT tree based scheduling 

modules, the TIT tree based ones are much more efficient. Therefore, the TIT trees are 

effective approaches to efficient real-time scheduling modules. More details about TIT 

trees can be found in [22],

A new utility accrual model called UAM+ is established for the resource 

allocation in asynchronous real-time distributed systems. The model is constructed based 

on the timeliness of both computation and communication. Moreover the interplay 

between computation and communication is also captured and characterized in the model. 

A resource allocation algorithm called IAUASA is developed under UAM+. The
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performance of IAUASA is much superior to two other resource allocation algorithms that 

are developed according to conventional UAM and conventional idea. Therefore, UAM+ 

provides a more effective framework for resource managers to optimize resource 

allocation along two dimensions, i.e., computation and communication, rather than 

conventional one dimension, i.e., computation or communication, in distributed real-time 

systems. More details about UAM+ model can be found in [65],

An online distributed algorithm called IDRSA is developed under the UAM+ 

model to conduct resource allocation in a distributed real-time system. IDRSA integrates 

DDA technique to explore the interplay between computation and communication. 

Extensive simulations reveal the excellent performance of IDRSA, especially when the 

interplay between computation and communication is tight. This not only proves the 

excellence of IDRSA in the resource allocation in distributed real-time systems, but also 

further validates the effectiveness of the UAM+ model for the resource management in 

distributed real-time systems. More details about IDRSA can be found in [88].

Calculus curve based real-time DVS technique is established. This technique is 

able to accommodate random event/task arrivals. Novel real-time DVS algorithms based 

on the technique are developed. These algorithms are able to accommodate and respond 

to the variation between the predicted and the actual execution times of tasks as well as 

the variation between the predicted and the actual arrivals of events, and they are 

excellent in energy saving. Therefore, the calculus curve based real-time DVS technique 

is an effective approach to energy-efficient real-time resource management in random 

hard real-time environments. More details about this technique can be found in [89],
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CHAPTER 7 

FUTURE WORK

The preceding chapters demonstrate that the proposed data structures, models, 

algorithms, and techniques can benefit real-time systems. This chapter discusses some 

directions that further work may take in the future.

In Chapter 2, the TIT tree is studied. Because the TIT tree is a basic data 

structure, more extensions of it could be explored and applied to more real-time systems 

to improve their efficiency and performance. Some TIT trees may be specifically 

designed for some specific systems, others may be applicable to a number of systems. 

Because efficiency and performance are always of critical importance for real-time 

systems, how to find and construct more TIT trees and effectively apply them to more 

real-time systems in the real world is an interesting work and deserves further 

exploration.

In Chapter 3, UAM+ model is studied. Because UAM+ well captures and 

characterizes the interplay between computation and communication in distributed real­

time systems, it provides an effective approach to constructing effective resource 

management in such systems. In the future, more effective resource allocation algorithms 

and techniques under UAM+ can be developed and applied to different distributed real­

time systems.

In Chapter 4, a two-level scheduling framework is discussed. It can effectively 

decompose resource scheduling into subprocesses and reduce system complexity through 

parallelism. In the future, the two-level scheduling framework can be further investigated 

to improve system scalability and fault-tolerance.
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In Chapter 5, calculus curve based real-time DVS technique is studied. This 

technique is able to accommodate random event/task arrivals, and it has been 

successfully integrated into two real-time scheduling algorithms. In the future, it will be 

an interesting work to integrate this technique into more real-time algorithms to conduct 

energy-efficient resource management. This is of special significance for those embedded 

real-time systems that need to deal with random event/task arrivals. In addition, how to 

integrate leakage power optimization into the history window based prediction technique 

is also worthy of further investigation.



www.manaraa.com

APPENDIX

THE ADJUST OPERATION ON TIT-V TREE (FOR CASE 4)

The Adjust algorithm (for the process on case 4) and its subroutines are illustrated in 

Figure A. 1 to A.6. Note that the process described here does not include how to append a 

leaf node to the right side of a TIT-V tree, because this can be easily accomplished by 

inserting the node to the tree at the right-most position. Figure A.l is the top level 

framework of the algorithm. Figure A.2 and A.3 are the frameworks for adjusting the left 

subtree and the right subtree of CommonParent, respectively. Figure A.4 illustrates how 

to merge and balance two subtrees X and F  where the height of X is less than that of F, 

i.e., |X| < |F|. In Figure A.4(a), the tree rooted from X is the left subtree, and that rooted 

from F  is the right subtree. In the case that the tree rooted from X is the right subtree, and 

that rooted from F  is the left subtree, the process is similar to A.4. Figure A.4(a) shows 

the two subtrees to be processed. At first, Adjust needs to find the left-most node B, such 

that |X| = \B\. Once B  is found, a new node BX  will be created (Figure A.4(b)). If this 

cause A loses balance, a LL rotation is needed (the LL and LR rotations are similar to 

those with AVL tree [7], and LL rotation is applied to a node when the Left subtree of the 

Left child of that node cause unbalance and LR rotation is applied to a node when the 

Right subtree of the Left child of that node cause unbalance). Figure A.4(c) is the tree 

obtained after applying a LL rotation to A in Figure A.4(b). If C loses balance after the 

LL rotation, a LR rotation is needed. Figure A.4(d) is the tree obtained after applying a 

LR rotation to C in Figure A.4(c). In the case that A  is balanced but C lose balance in 

Figure A.4(b), a LL rotation is needed, and the resulting tree will be the same as that in 

Figure A.4(d).
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Nodei*—the node whose interval of vacancy contains 
point P, (see Figure 2.7).

Node**—the node whose interval of vacancy contains 
point P2 (see Figure 2.7).

CommonParent Find the nearest common parent of 
Node i and Node*

Temp*—CommonParent

Tree rooted 
from Temp 
is balanced

Hi*— height of the left subtree of Temp 
H**—height of the right subtree of Temp

Root of the resulting subtree replaces Temp

Temp *—root of the resulting subtree

Subtree rooted from Temp is a balanced subtree

Temp is the 
root of the 
whole tree

Temp *— Temp.parent

End

Rotation

Adjust the rieht subtree of CommonParent

Adjust the left subtree of CommonParent

Merge_and_Balance the two subtrees

Figure A .l Adjust algorithm (for the process on case 4).
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Current\+—Node \ Current-*—Node.

Currenti—  
CommonParent.left

Currenti—  
CommonParent. right

R eturn R eturn

Right_Cut until Currenti becomes: the right child of 
its parent, or the left child of CommonParent.

Left_Cut until Currenti becomes: the left child of 
its parent, or the right child of CommonParent.

Currenti—  
CommonParent left

Currenti=  
CommonParent.right

Return Return

Current, is the right child of its parent Currenti is the left child of its parent

Currenti *— Currenti parent Currenti*—Currenh.parent

Subtree rooted 
from Currentiis

Subtree rooted 
from Currenhis

Hi*— height of the left subtree of Currenti 
Hi*— height of the right subtree of Currenti

Hi*—height of the left subtree of Currenti 
Hi*—height of the right subtree of Currenti

Merge_and_BaIance the two subtrees Rotation Merge_and_Balance the two subtrees Rotation

Root of the resulting subtree replaces Currenti Root of the resulting subtree replaces Currenti

Currenti *—'The root of the resulting subtree Currenti *—'The root of the resulting subtree

Subtree rooted from Currenti is a balanced subtree Subtree rooted from Currenti is a balanced subtree

Figure A.2 Adjust the left subtree. Figure A.3 Adjust the right subtree.
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left subtree right subtree

(a) Two subtrees to be processed (b) A new node BX  is created

If A loses balance (original |E | < |B|) 
apply LL rotation

BX

If C loses balance (original \G \ > |£'| <|B|) 
apply LR rotation

(c) Tree obtained from (b) by (d) Tree obtained from (c) by
applying LL rotation to A applying LR rotation to C

Figure A.4 Merge_and_Balance two subtrees.
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Figure A.6 Left_Cut.Figure A.5 Right_Cut.
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